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ABSTRACT 

Our current work aimed constructing new variety soliton solutions to the 
completely integrable evolution (3+1)-dimensional nonlinear equation. The 
suggested model has strong relation with many equations especially with 
the Korteweg–De Vries (KDV) equation; it describes the real features in several 
branches of science as physics, fluid, engineering and technology. These soliton 
solutions of this model will be constructed for the first time using three distinct 
methods. The three employed methods are the generalized Kudryashov method 
(GKM), the extended direct algebraic method (EDAM) and (G'/G)-expansion 
method. The soliton solutions we obtained are novel compared to those previously 
reported by other authors using different methods.  
 
Keywords: The (3+1)-dimensional nonlinear evolution equation, generalized 
Kudryashov method, extended direct algebraic method, (G'/G)-expansion method, Soliton 
solutions. 

  
INTRODUCTION 

In literature, the nonlinear lump waves, viewed as representative models for rogue wave 
dynamics in different scientific domains, have received notable attention.In this article we will 
study the Completely Integrable Evolution (3+1)-dimensional nonlinear equation that 
represents the real features in several branches of science like physics, fluid, engineering and 
technology; especially with the KDV equation. A variety of powerful techniques, as 
demonstrated in several important publications, have been developed and applied to study the 
soliton dynamics associated with this model; see, for example, In 2003, Geng began studying 
the algebraic and geometric solutions of certain multidimensional nonlinear evolution 
equations, and in subsequent years, he and Ma wrote the N-soliton solution for these nonlinear 
equations and the Wronskian form of the equation [1], [2]. 
 
Wazwaz made a significant contribution to science in 2009 with his work on multiple soliton 
and singular soliton solutions for (3+1) dimensional nonlinear evolution equations. Wazwaz 
also studied various types of multiple soliton solutions for these evolution equations in 2013 
and 2014 and produced multiple soliton solutions [3], [5], [6]. 
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Similarly, Yang, J.Y., and Ma, W.X., scientists who have worked on lump-type solutions of the 
Jimbo-Miwa equation in the same dimension, followed Zhaqilao's work on rogue waves and 
rational solutions for (3+1)-dimensional evolution equations [4], [7]. 
 
In 2017 and 2018, different scientists contributed to science with studies containing different 
solutions such as M-lump, mixed lump-kink, and lump-king for (3+1)-dimensional nonlinear 
evolution equations [8], [9], [10]. 
 
According to [6] the (3 + 1)-dimensional nonlinear evolution equation can be proposed as 
 

1 13 (2 2 ) 2( ) 2( ) 0.xz t xxx x y x x y x x yy y yz

− − −  + −  +    +   + =       (1) 

 
To remove the integral term, let us consider the potential  

 
( , , , ) ( , , , ).xx y z t T x y z t =                                                                  (2) 

 
Hence, Eq. (1) become 
 

3 2 2 2

2 2 2 2 0.

xxz xyt xxxxy xy xx x xxy

xxx y xx xy xy yy x yyy xyz

T T T T T T T

T T T T T T T T T

− − + +

+ + + + + =
                                 (3) 

 
Let us consider the transformation ( , , , ) ( ), ,T x y z t T x y z wt = = + + − then Eq. (3) become  

 
26 (2 4) 6 0.T T T w T T    − + + + + =                                                (4) 

 
To reduce this equation, let us take ,T R = then Eq. (4) become 

 
26 (2 4) 6 0.R R R w R R   − + + + + =                                                    (5) 

 
When the homogenous balance theory is applied for the above equation it implies that 2M =  
The main objective of this study is to investigate (3+1)-dimensional nonlinear evolution 
equations by obtaining new soliton solutions using the three techniques mentioned above.The 
first one is the GKM [11, 12], the second one is EDAM [13-15], The (G′/G)-expansion technique 
constitutes the third approach. [16-18]. In Sections 2, 3, and 4 of our paper, the use of the GKT, 
EDAM, and (G'/G) algorithms, respectively, to generate soliton solutions for the proposed 
model is described in detail. In Section 5, the results are presented, and the paper is concluded. 
 

THE GKT ALGORITHM 
To investigate the metholgy of this technique, let us consider the formalism of the nonlinear 
partial differential equation (NLPDE) in ( , , , )R x y z  and its partial derivatives which is:   

      
            ( , , , , , , , , , , , , ,...) 0.x y z xx yy zz xy x y zR R R R R R R R R R R R R     =                          (6)       
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That can be transformed to into ordinary differential equation in ( , , , )R x y z t  and its total 

derivatives with the aid of the transformation ( , , , ) ( ), ,R x y z R x y z w   = = + + − in the 

form 
 

 ( , , , ,...) 0.R R R R   =                                                                         (7) 

 
The GKM introduce the solution of Eq. (7) in the form: 
 

2

0 0 1 2

2

0 1 2

0

( )
( ) ( ) ...

( ) .
( ) ( ) ...

( )

N
i

i

i

M
j

j

j

s q
s s q s q

R
g g q g q

g q


 


 



=

=

+ + +
= =

+ + +




                                (8) 

 
Where the parameters , ( 0,1,2,..., )is i N=  and , ( 0,1,2,..., )jg j M=  will be defined 

subsequently in such a way that 0 & 0N Ms g   and thus the function ( )q  is the solution of 

the second order nonlinear equation  
 

2( )
( ) ( ).

dq
q q

d


 


= −                                                                        (9) 

 
By integrating Eq. (9) we get  

 
1

( ) .
1

q
Ke 

 =
+

                                                                                 (10)                                                                                  

 
Where K  is the integration constsnty, to utilize the above schema? 
 
The solution of Eq. (5) whose balance number is 2,M =  according to the GKT is: 

 
2 3

0 1 2 3

2

0 1 2

( ) ( ) ( )
( ) .

( ) ( )

s s q s q s q
R

g g q g q

  


 

+ + +
=

+ +
                                       (11) 

 

By introducing , , ,R R R R   into Eq. (5), set the coefficients of various powers of iq  =0 will give 

a equational system from which large several results will be detected, we will construct the 
solution of only one of them which is:   
 

2 0 2 1
0 1 3

2 2

, , 0, 1.
s g s g

s s s w
g g

= = = =                                                         (12) 

 
THIS RESULT CAN BE SIMPLIFIED TO BE 

 

0 1 2 0 1 2 31, 2, 1, 2, 4, 1, 0.s s s g g g w s= = − = = = − = = = =                    (13) 
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According to these parameter values, the solution is: 
 

2

2

1 1
1 2

1 1
( ) .

1 1
1 2 4

1 1

e e
R

e e

 

 



   
− − +   

+ +   =
   

− +   
+ +   

                                                        (14) 

 
Hence; 

( ) ( ) .T R d  =   

 

2 3
( ) 0.5 0.25ln[ 2 4] .

2 2
T e e

e

 


 = + − + +

−
                                  (15)    

   

   
Fig 1: The soliton solutions in two and three dimensions of ( )R  Eq.(14) when: 

0 1 2 0 1 2 31, 2, 1, 2, 4, 1, 0, 1.s s s g g g w s K= = − = = = − = = = = =  

 

 
Fig 2: The soliton solutions in two and three dimensions of ( )T  Eq.(15) when: 

0 1 2 0 1 2 31, 2, 1, 2, 4, 1, 0, 1.s s s g g g w s K= = − = = = − = = = = =  
 

THE EDAM ALGORITHM 
The EDAM presents the solution of Eq. (7) as follows: 
 

2 2 3 4

0

( ) ( ), .
M

i

i

i

R b      
=

= = + +                                     (16) 
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Now, for the proposed model, the solution that satisfies the balance is: 
 

2

0 1 2( ) .R b b b  = + +                                                                                  (17) 

 
Hence 
 

1 22 .R b b   = +                                                                                           (18) 

 
2

1 2 22 2 .R b b b     = + +                                                                         (19) 

 

1 2 2 26 8 2 .R b b b b         = + + +                                                  (20) 

 
2 2 3 4    = + +                                                                                     (21) 

 
2 31.5 2 .      = + +                                                                              (22) 

 
23 6 .         = + +                                                                         (23) 

 
2 2 23 3 12 6 .               = + + + +                                (24) 

 
By setting the coefficients of the different forces in the above differential equations (17/24) to 
zero, 10 different results were obtained. One of these results is: 
 

     0 1 22, 0.7, 0.1, 1 0.3 , 0.3, 0.04.b w b b  = − = = − = − − = = −                             (25) 

 
The solution according to this result is: 
 

0.7 1.1cos 2 2sin 2 cos 2 0.7sin 2
( ) .

1.2 0.8cos 2 1.2 0.8cos 2
R i

   


 

   − −
= +      + +   

   (26) 

 
Thus 
 

0.7 1.1cos 2
Re.( ( )) .

1.2 0.8cos 2
R






−
=

+
                                                                (27) 

 

Re ( ) Re( ( )) .T R d  =   

 

1

2.5

1
47 tan ( tan )

115 2
Re ( ) .

82 5
T C



 

−

= − +                                           (28) 
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Fig 3: The soliton solutions in two and three dimensions of Re ( )R  Eq.(27) when: 

0 1 22, 0.7, 0.1, 1 0.3 , 0.3, 0.04.b w b b  = − = = − = − − = = −  
 

 
Fig 4: The soliton solutions in two and three dimensions of Re ( )T  Eq.(28) when: 

0 1 22, 0.7, 0.1, 1 0.3 , 0.3, 0.04, 1.b w b b C  = − = = − = − − = = − =  
 
And 

2sin 2 cos 2 0.7sin 2
Im( ( )) .

1.2 0.8cos 2
R

  




−
=

+
                                      (29) 

 
Hence 

Im ( ) Im( ( )) .T R d  =   

 

3.5

3 [2cos( 2 ) 3] 20cos 2
Im( ( )) .

2

Ln
T C

 


+ −
= +                            (30) 

 

  
Fig 5: The soliton solutions in two and three dimensions of Im ( )R  Eq.(29) when: 

0 1 22, 0.7, 0.1, 1 0.3 , 0.3, 0.04.b w b b  = − = = − = − − = = −  
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Fig 6: The soliton solutions in two and three dimensions of Im ( )T  Eq.(30) when: 

0 1 22, 0.7, 0.1, 1 0.3 , 0.3, 0.04, 1.b w b b C  = − = = − = − − = = − =  

 
THE (G'/G) ALGORITHM 

The (G'/G) algorithm presents the solution of Eq. (7) as: 
 

0

1

( ) , 0.

iM

k M

i

G
R A A A

G


=

 
= +  

 
                                                              (31)    

 
Where ( )G  satisfies the auxiliary equation 0G G G  + + =  for which these forms of 

solutions will be detected.  

(I) If 2 4 0 −   

2 2

2 1 2

2 2

1 2

4 4
sinh( ) cosh( )

4 2 2( ) .
2 24 4

cosh( ) sinh( )
2 2

s s
G

G
s s

   
 

  

   
 

 − −
+  −

 = −
 − −

+ 
 

               (32) 

 

(II) If 2 4 0 −  the solution is: 

         

2 2

2 1 2

2 2

1 2

4 4
sin( ) cos( )

4 2 2( ) .
2 24 4

cos( ) sin( )
2 2

s s
G

G
s s

   
 

  

   
 

 − −
− +  −

 = −
 − −

+ 
 

                (33) 

 

(III) If 2 4 0 − =   

           
2

1 2

( ) .
2

sG

G s s





 
= − 

+ 
                                                                                  (34) 

 
The balance number MMM, calculated beforehand for the suggested model, is M=2. 1 2,s s  are 

constants, hence the solution according to this algorithm is:  
 

2

0 1 2( ) .
G G

R A A A
G G


    

= + +   
   

.                                                                      (35) 

Hence 
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3 2

2 1 2 1 22 ( 2 ) ( 2 ) .
G G G

R A A A A A
G G G

  
       

 = − − + − +     
     

                           (36) 

 
 

4 3 2

2 1 2 1 2 2

2 2

1 1 2 1 2

6 (2 10 ) (3 8 2 )
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G
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    

       
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+ + + + + 
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           (37) 
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+
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 
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(38) 

 
When R and its partial derivatives are emerged inside Eq. (5), by equating the coefficients of 

various powers ( )iG

G


 to zero, a system of equations with two different results was obtained. 

which we will construct the solution of one of them which is:           
       

21
2 0

1
0, , 2, ( 4 6 ).

2 2

A
A w A  = = = = − + −                                                         (39) 

 
This result can be simplified to be 
 

0 1 10,, 0.5, 1, 5.A A A w = = = = = = −                                                        (40) 

 
The solution according to this result is: 

2

( ) 1 .
G G

R
G G


    

= + +   
   

 

 
Where 

0.25sinh 0.25 0.5cosh 0.25
( ) 0.25.

cosh 0.25 2sinh 0.25

G

G

 

 

  +
= − 
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Thus 
2

0.25cosh 0.25 0.25sinh 0.25 0.25cosh 0.25 0.25sinh 0.25
( ) 1 .

cosh 0.25 2sinh 0.25 cosh 0.25 2sinh 0.25
R

   


   

   − −
= + +   

+ +   
     (41) 

 
And  

( ) ( ) .T R d  =   

3
( ) ln[cosh 2sinh ]

4 4 4

[tanh 1] [2 tanh 1]
34 4 .

2
16 tanh 8

4

T

Ln Ln

C

  


 



= + +

+ − +

+ − +

+

                      (42) 

 

 
Fig 7: The soliton solutions in two and three dimensions of ( )R  Eq.(41) when: 

0 1 1 1 20,, 0.5, 1, 1, 2, 5.A A A s s w = = = = = = = = −  

 

 
Fig 8: The soliton solutions in two and three dimensions of ( )T  Eq.(42) when: 

0 1 1 1 20,, 0.5, 1, 1, 2, 5, 1.A A A s s w C = = = = = = = = − =  
 

CONCLUSION 
In our paper, we obtained very important results for (3+1)-dimensional nonlinear equations 
using three different expansion methods to obtain soliton solutions. These three methods were 
applied in the same vein and in parallel, and through these methods, new types of soliton 
solutions were presented, such as parabolic and hyperbolic function soliton solutions and 
combinations of bright and dark soliton solutions. Additionally, singular soliton solutions and 
other rational soliton solutions were also presented. The 2D and 3D behaviors of these 
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solutions represent a new vision of the soliton emerging from this model. The novelty of the 
results obtained in our study will be more understandable when compared with studies 
documented in [6,10]. 
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