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ABSTRACT

Our current work aimed constructing new variety soliton solutions to the
completely integrable evolution (3+1)-dimensional nonlinear equation. The
suggested model has strong relation with many equations especially with
the Korteweg-De Vries (KDV) equation; it describes the real features in several
branches of science as physics, fluid, engineering and technology. These soliton
solutions of this model will be constructed for the first time using three distinct
methods. The three employed methods are the generalized Kudryashov method
(GKM), the extended direct algebraic method (EDAM) and (G'/G)-expansion
method. The soliton solutions we obtained are novel compared to those previously
reported by other authors using different methods.

Keywords: The (3+1)-dimensional nonlinear evolution equation, generalized
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INTRODUCTION

In literature, the nonlinear lump waves, viewed as representative models for rogue wave
dynamics in different scientific domains, have received notable attention.In this article we will
study the Completely Integrable Evolution (3+1)-dimensional nonlinear equation that
represents the real features in several branches of science like physics, fluid, engineering and
technology; especially with the KDV equation. A variety of powerful techniques, as
demonstrated in several important publications, have been developed and applied to study the
soliton dynamics associated with this model; see, for example, In 2003, Geng began studying
the algebraic and geometric solutions of certain multidimensional nonlinear evolution
equations, and in subsequent years, he and Ma wrote the N-soliton solution for these nonlinear
equations and the Wronskian form of the equation [1], [2].

Wazwaz made a significant contribution to science in 2009 with his work on multiple soliton
and singular soliton solutions for (3+1) dimensional nonlinear evolution equations. Wazwaz
also studied various types of multiple soliton solutions for these evolution equations in 2013
and 2014 and produced multiple soliton solutions [3], [5], [6].
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Similarly, Yang, J.Y., and Ma, W.X,, scientists who have worked on lump-type solutions of the
Jimbo-Miwa equation in the same dimension, followed Zhaqilao's work on rogue waves and
rational solutions for (3+1)-dimensional evolution equations [4], [7].

In 2017 and 2018, different scientists contributed to science with studies containing different
solutions such as M-lump, mixed lump-kink, and lump-king for (3+1)-dimensional nonlinear
evolution equations [8], [9], [10].

According to [6] the (3 + 1)-dimensional nonlinear evolution equation can be proposed as

W, —(2¥, + V¥, —2¥Y,), +2(¥,0,'Y,), +2(Yo,'Y,,), +¥,, =0. (1)

To remove the integral term, let us consider the potential

Y(x,y,z,t)=T,(x,y,z,t). (2)

Hence, Eq. (1) become

e = 2T T +2r, T, +2T, T
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+2T Ty + 21, T, + 2T, T, +21, T, +T,, =0.
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(3)

Let us consider the transformation T (x,y,z,t) =T (£), { =X +y +z —wt, then Eq. (3) become
T4+ 6T T + (2w +4)T " +6T "> =0. (4)
To reduce this equation, let us take T '=R, then Eq. (4) become
—R"”"+B6RR"+ (2w +4)R"+6R"* =0. (5)

When the homogenous balance theory is applied for the above equation it implies that M =2

The main objective of this study is to investigate (3+1)-dimensional nonlinear evolution
equations by obtaining new soliton solutions using the three techniques mentioned above.The
first one is the GKM [11, 12], the second one is EDAM [13-15], The (G’/G)-expansion technique
constitutes the third approach. [16-18]. In Sections 2, 3, and 4 of our paper, the use of the GKT,
EDAM, and (G'/G) algorithms, respectively, to generate soliton solutions for the proposed
model is described in detail. In Section 5, the results are presented, and the paper is concluded.

THE GKT ALGORITHM
To investigate the metholgy of this technique, let us consider the formalism of the nonlinear
partial differential equation (NLPDE) in R(X,y,z,7) and its partial derivatives which is:

O(R,R,,R,,R,,R,R,,,R,,R

XX ! yy ' trr?

R,.R.,.R,.,R, R, ,.)=0. (6)

zz 17" Mxy 1 Mxzr Ny
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That can be transformed to into ordinary differential equation in R(X,y,z,t) and its total
derivatives with the aid of the transformation R(x,y,z,7)=R({),{=x +y +Z —w 7, in the
form

7(R,R",R",R",..) =0. (7)

The GKM introduce the solution of Eq. (7) in the form:

iSiQ‘(é) 2
R(;): |i\/|=0 _ SO+Slq(é/)+32q (é/)+ (8)

2.9;9°() 9, +90()+9.a° )+

Where the parameters s;,(i =0,12,..,N) and g, ,(j=0,12,...,M) will be defined
subsequently in such a way that s, #0&4g,, #0 and thus the functionq(¢) is the solution of
the second order nonlinear equation

dq (<)

dc =q°(£)-a(d). (9)
By integrating Eq. (9) we get
&)= : (10)
e = ket

WhereK is the integration constsnty, to utilize the above schema?

The solution of Eq. (5) whose balance number is M =2, according to the GKT is:

R So TS5 (é) quz(é/) 53q3(é)
- . 11
(é/) 90 glq(é) gzqz(é) ()

By introducingR,R’,R"”,R"" into Eq. (5), set the coefficients of various powers of q' =0 will give
a equational system from which large several results will be detected, we will construct the
solution of only one of them which is:

Sozﬁlslzﬁlsszo’w :1. (12)
9, 9,

THIS RESULT CAN BE SIMPLIFIED TO BE

S, =S, =-1s,=2,0,=19,=-2,0,=4,=w =15, =0. (13)
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According to these parameter values, the solution is:

_1_(1 1 ¢j+2(1 1 4)
R({)= i i (14)

1 1\
1-2 +4
(1+e‘j (1+e4j

T()=[R()d¢.

Hence;

T (cj)=0.5§+0.25|n[e24—2e4+4]+L. (15)

\J2ec -2

10 s 2 5 0
Fig 2: The soliton solutions in two and three dimensions of T ({') Eq.(15) when:
So=S,=-1s,=2,0,=19,=-2,0,=4,=w =1s,=0,K =1.
THE EDAM ALGORITHM
The EDAM presents the solution of Eq. (7) as follows:

N i 2 2 3 4

R() =20 ¢'(O) ¢” =ag’+ 50’ + 9. (16)
i=0
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Now, for the proposed model, the solution that satisfies the balance is:
R (&) =b, +b,p+b,p.
Hence
R'=b,0" +2b,p¢'.
R" =b,p" +2b,0'* +20,00".

nre

R " _ bl¢”” + 6b2¢7” + 8b2¢)’(0”, + 2b2¢)(p .
¢’2 = a¢2 +ﬁ¢3 +7/¢4
0" =ap+1580> +2y¢°.

" =a¢p' +3Bpe' +6yp°p.

nre

" =ap"+3Bpe" +3B0p" +12y 't +6y 9’

(17)

(18)
(19)
(20)
(21)
(22)
(23)

(24)

By setting the coefficients of the different forces in the above differential equations (17/24) to

zero, 10 different results were obtained. One of these results is:

a=-2,=07,y=-0.1b, =-1-0.3w ,b, =0.3,b, =—0.04,

The solution according to this result is:

(25)

(0.7-1.1c0s/2¢ | . ( 2sinv/2¢ cosv/2¢ —0.7sin2¢
R(g)_(l.2+0.8cosﬁgj+l( 1.2+0.8c05~/2¢ - (29
Thus
~0.7-1.1cos+/2¢
Re.(R(£)) " 1.2+0.8cos2¢ (27)
ReT (¢) = [Re(R(£))d ¢
L1
47tan""(—=tan—==)
_ 5 J2m 11
ReT (£) = NG S¢+C. (28)
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Lo«
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Fig 3: The soliton solutions in two and three dimensions of ReR ({') Eq.(27) when:
a=-2,=07,y=-0.1b,=-1-0.3v ,b, =0.3,b, =-0.04.

_13\/ 4

Fig 4: The soliton solutions in two and three dimension.s of ReT ({) Eq.(28) when:
a=-2,=07y=-0.1b,=-1-0.3v,b, =0.3,b, =-0.04,C =1.

And
Hence
IMT (£)=[IMR ()¢
m (T (£)) = 3Ln[2cos(v/2¢) +3]-20cos2¢ C (30)

23.5

(8]
=3

Fig 5: The soliton solutions in two and three dimensions of IMR (¢') Eq.(29) when:
a=-2,=07,y=-0.1b,=-1-0.3v,b, =0.3,b, =-0.04.
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v :\_ U vq
Fig 6: The soliton solutions in two and three dimensions of IMmT (¢) Eq.(30) when:
a=-2,=07,y=-0.1b,=-1-0.3v ,b, =0.3,b, =-0.04,C =1.

THE (G'/G) ALGORITHM
The (G'/G) algorithm presents the solution of Eq. (7) as:

M Gl i

RO =A+D A, [—} A, #0. (31)
iz LG

Where G(¢) satisfies the auxiliary equation G"+ 4G'+AG =0 for which these forms of

solutions will be detected.
D If /?—41-0

&y 4 sS4 s o 40

2 2 o (32)
s, cosh(\/ﬂz_zm)g“jtszsinh(\/uz_M)é ?
(I  If 4> —424<0 the solution is:
G’ \/m —slsin(7M)§+szcos(7W_M)§
&= Ji Jié—ar_ | 2 (33)
s, coS(~+———— ’u )§+s sin(~——— ﬂ )¢
(1) If z°—44=0
2 |_H
( ) (s +32§J 2 (34)

The balance number MMM, calculated beforehand for the suggested model, is M=2. s, s, are
constants, hence the solution according to this algorithm is:

R(§)=A0+Al(%j+Az(%j - (35)
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, G G'Y G’
R =—2A2(§) —(Al+2yA2)(a] —(Al,u+2A2ﬂ,)(G j (36)

G !

4 !
R"=6A, (Ej +(2A, +104A,) (G

3 G’ 2
Ej +(3Al,u+8A22+2yA2)( ]

G
(37)

’

+(2A A +A 1 +6A, A1) (G

E) +AAu+2A,0°%

N G'Y
R =120A, (Ej +(24A, +336uA,) (Ej

N4
+(60A, 12+ 306A,11° + 240A, 4 +12,uA,) [2—)

N3
+(40A, 4 +50A, 1 +380A, A4 + 20A, 1% +90A,1° + 60A,A, 11) (C(;;_j (38)

1\ 2
+(60A A +136A,4% +140Au°A, +15A,1° +16A, 40 +8A A, 1%) ((é—j

1\2
+(16AA2 + 2241°A, +1244°A, + 60A°A, + At +6A,44° +60A A, A1) [2—)
+8UAA, +ALAPA, + 612 AN, +164°A, + LA,

When R and its partial derivatives are emerged inside Eq. (5), by equating the coefficients of

!

: G’y . . . :
various powers (E)I to zero, a system of equations with two different results was obtained.

which we will construct the solution of one of them which is:
izO,y:%,AZ:Z,W :%(—4+y2—6A0). (39)
This result can be simplified to be
A=0,,u=05A,=A=A=1w =-5. (40)
The solution according to this result is:

G\ (G"Y
R(§)=1+(Ej+(a) .

(G_’)_ 0.25sinh 0.25¢ +0.5¢c0sh 0.25¢ _0.25
G cosh 0.25¢ +2sinh 0.25£ o

Where
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Thus

0.25¢0sh 0.25¢ —0.25sinh 0.25§j+(0.25005h 0.25¢ —0.25sinh 0.25¢

2
. . . (41)
cosh0.25¢ +2sinh 0.25¢ cosh0.25¢ +2sinh 0.25¢

R(§)=1+[

And
T()=[R()d¢.

T (&)= 375+ In[cosh%+ 2sinh %]

Ln[tanh£+1]—Ln[2tanh£+1] (42)
4 4 - 3 +C.

—+

16tanhi+8

A

:
ni
) |

e - " . “ox
10 7 -10 -5 5 10

Fig 7: The soliton solutions in two and three dimensions of R (') Eq.(41) when:
A=0,,u=05A,=A =A =1s,=1s,=2w =-5.

n
=%
or

Fig 8: The soliton solutions in two and three dimensions of T ({') Eq.(42) when:
A=0,,u=05A,=A =A=1s,=1s,=2w =-5C =1.

CONCLUSION
In our paper, we obtained very important results for (3+1)-dimensional nonlinear equations
using three different expansion methods to obtain soliton solutions. These three methods were
applied in the same vein and in parallel, and through these methods, new types of soliton
solutions were presented, such as parabolic and hyperbolic function soliton solutions and
combinations of bright and dark soliton solutions. Additionally, singular soliton solutions and
other rational soliton solutions were also presented. The 2D and 3D behaviors of these
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solutions represent a new vision of the soliton emerging from this model. The novelty of the
results obtained in our study will be more understandable when compared with studies
documented in [6,10].
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