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ABSTRACT   

In this paper, we consider the portfolio selection problem, with nonlinear transaction costs, basic 

constraints and probabilistic constraints. Such a problem cannot be handled by the usual quadratic or 

convex optimization methods.  We develop a heuristic method which yields to computation of efficient 

(suboptimal) solution of the problem. We describe our heuristic method for finding optimal portfolio 

based on solving many small optimization problems over large generation number, thus we obtain a 

good suboptimal solution.  Experimental results are demonstrated and visualized with various widely 

used indexes: stocks in US market: U.S. three – months treasury bills, U.S. long – term government 

bonds, S&P 500, Wilshire 5000, NASDAQ, Lehman Brothers corporate bond index, EAFE foreign stock 

index, and Gold recorded from (Jan 2000 – Jan 2008) with enhanced performance.  Finally, the results 

suggest that nonlinear transactions costs improve considerably the value of optimal portfolio over 

investment period, especially for portfolio with smaller among all assets. 

Keywords: Portfolio selection, exponential transaction cost, optimization, risk, gain, visualization. 

1 Introduction  

Linear and nonlinear transaction costs play a particularly important role in portfolio management and 

represent also source of debate among financial professionals both academic and practitioner.  In real 

financial market, assets can be bought or sold according to some specific criterion which is determined 

by the investor. There is a cost associated to buying or selling assets which is called transaction cost. 

The transaction cost can be used to model a number of costs, such as brokerage fees, bid ask spreads, 

taxes, or even fund loads. In this paper we shall assume the transaction costs to be non-separable and, 

therefore, we can represent all cost with a unique function C. When the transaction cost of a particular 

asset is very large, it is not advantageous to change to holding of that asset, which will then remain to 

its initial value, otherwise if the transaction cost is very small, it is worth making the trade and pay such 

a reasonable cost which could increase exponentially with large number of assets and volume of trade. 

Although the transaction cost has been taken into consideration by many researchers, none of them 

has used the exponential form of transaction cost in their work.  The main objective of this paper is to 

address the optimal portfolio problem subject to transaction cost and understand the effect of 
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transaction cost upon portfolio performance. The portfolio optimization with fixed transaction cost 

have been investigated by many researchers among which,  ( Loeb T.F et al., 1993) who used a specific 

structure of  the covariance matrices to describe the  solution for a one factor model.  Further (Elton 

E.J.  et al. (2003) and (Jimbo et al. 2003) used genetic mixed / integer programming method to deal 

with fixed cost and other integer constraints, (Golberg D.E, 1999) and (Duan Y.C.A. 2007)  used  genetic 

mixed and integer programming method  to construct heuristics method for handling fixed cost 

portfolio optimization. In the past, several researchers have reported findings concerning total cost, 

which includes a market maker’s spread, price concession and commission the total cost of trading 

decreases with increase in market capitalization (Chang et al., 2000).  This implies that for a given size 

of the market capitalization, the larger the size of trading, the more is the cost. Thus, the largest cost is 

associated with a large size of trading in small market capitalization and the smallest cost is associated 

with smallest trading. A solution for a portfolio optimization problem with linear transaction cost is 

given in (Mulvey et al., 1993).  Their model assumes a diagonal covariance matrix, the budget constraint 

and upper bound on all assets holdings.  Recent studies of the cost in in portfolio optimization include 

(Genott G. and Jung A. (1994) and (Jimbo et al., 2011).  Those authors incorporate the transaction cost 

into the multi-period asset allocation problem. They solve the problem by approximating the nonlinear 

shape of the cost by a linear function.    As mentioned in (Jimbo et al., 2011), ignoring transaction cost 

will lead to ineffective portfolio implementation. This is related to the complexity of the problem of 

searching the optimal portfolio subject to transaction cost. In this context the traditional quadratic 

programming approach for the solution cannot be applied anymore since the transaction cost could be 

nonconvex, nonlinear and/or separable function of holding of new and existing portfolio. Modelling 

multipored planning problem by various nonstandard methods, (Papp G. et al. 2006) use a linear 

approximation of a weakly nonlinear transaction cost function to investigate the effect of proportional 

transaction cost and then solve the problem by the dynamic programming techniques.  In this work, 

we go beyond nice linear approximation and focus or more complex situation when the linear 

approximation is not applicable as it could be the case in many practical portfolio optimization 

problems. On the other hand, constraints play significant role in portfolio optimization. We consider 

here same as in (Jimbo et al., 2011) the basic or universal constraints and non-universal constraints.  

Under basic constraints, the weight allocated to each asset lies between 0 and 1 and they sum up to 1 

which indicated a full investment. In practice, it is often the case that an investor chooses to invest a 

definite proportion of weights bounded by a range in specific stock and/or chooses to invest a 

proportion of weights in stocks related to specific sectors such as bank, energy and technology,  with 

sum total weights in each specific sector bounded by a limit (Murtagg and Sauder 1978), (Elton et al., 

2003) and (Dietmar F. 2005). To solve the optimal portfolio under transaction cost problem with such 

a huge class of constraints, several approaches in theory and practice have been proposed. (Jimbo et 

al., 2013a) proposed grouping available assets into classes based on sectors, size and geography for 

making a selection of K assets from each of these classes. Although this approach corresponds to 

traditional practice followed by portfolio managers, it yields inferior solutions due largely to its ignoring 

the estimated correlations between assets (Jimbo et al., 2013b). Another approach has been to make 

use of single agent local search algorithm such as simulated annealing and threshold accepting (Perold 

A.F. 1994). However, this approach suffers from the peril of getting stuck in local optima to get over 

which the problem had to be solved for several runs. Multi-agent methods such as Particle swarm and 

hybrid search approaches have also reported near-optimal or mixed results. Also, the k/means cluster 

analysis technique was proposed to tackle the cardinality constraint, but such investigation excluded 

bounding and class constraints (Golberg D.E, 1999) and (Mulvey et al., J.M. 1997).    In this work, we go 
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beyond nice linear approximation and focus on more complex situation when the linear approximation 

is not applicable as it could be the case in many practical portfolio optimization problems.  We discuss 

the solution of optimal portfolio problem under exponential cost and  associate complex constrained 

optimization problem that includes all previous constraints and Value - at - Risk (as part of  the 

constraint on portfolio).  By assuming that the transaction cost is represented with a unique function 

C, we use a Genetic Algorithm to solve the optimal portfolio problem. This technique has proven to be 

endowed with the ability to perform direct searches in potentially huge search spaces looking for 

optimal solutions or acceptably good solutions quickly. The remainder of the paper presents the 

portfolio problem subject to transaction cost in the next section, develops the portfolio optimization 

system to solve the proposed problem in the third section, and provides results with the portfolio 

optimization without transaction cost in the fourth section, followed by a conclusion in the last section. 

2 Portfolio Optimization Framework 

2.1 Naive Markowitz’s Portfolio Optimization Problem   

Let  N  be the number of assets in the universe,   the expected return of the asset i , and ij  the 

covariance between the return of asset i  and j  in the historical data.   We acknowledge that the stock 

portfolios have observable price in the market, the looking-period – forward is the assumed to be 

adequately proxied by historical data (see Jimbo et al., 2011). However, a discussion on adjusted GA 

approach acting as inherent noise filters in eliminating the noise embedded in the covariance matrices 

of stock portfolio will be carried out in section four of this work. Let  be the proportion of capital to 

be invested in asset  and  be the number of assets in which the investor decides to invest his capital. 

Using the above notation, the expected stock portfolio return is given by  
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We define a risk aversion parameter  0,1   to present what is known as the weighted formulation 

of the portfolio optimization problem.  A closed observation of    reveals that when it is closed to 

zero, the weight shift toward stocks yielding high returns and when closed to one, the weights shift 

toward combinations of stocks yielding low volatility in the efficient set. 

2.2 Portfolio Optimization with Stochastic Constraints 

Portfolio optimization with stochastic constraints was developed in (Jimbo et.al. 2011), and further 

extended results were presented in (Jimbo and Craven, 2013). The optimizing portfolio of finitely many 

assets is an important problem in computational finance. It is generally agreed that portfolio 

performance should be measured into two distinct dimensions; the mean describing the expected 

return rate and the risk which measures the uncertainty of the return rate.  In the mean risk universe 

approach, we select from the universe of all possible portfolios those that are efficient for a given value 

iw
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of mean that minimise the risk.  Or equivalently for a given value of risk, they maximise the return. This 

approach allows one to formulate the above problem in a parametric optimization context which 

facilitates the trade-off analysis between mean and risk. 

A. Fitness     

 
1 1 1
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i j i
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2.3 Portfolio Optimization Problem under Exponential Transaction Costs 

The optimizing portfolio of finitely many assets is an important problem in computational finance. It is 

generally agreed that portfolio performance should be measured into two distinct dimensions; the 

mean describing the expected return rate and the risk which measures the uncertainty of the return 

rate.  In the mean risk universe approach, we select from the universe of all possible portfolios those 

that are efficient for a given value of mean they minimise the risk.  Or equivalently for a given value of 

risk, they maximise the return. This approach allows one to formulate the above problem in a 

parametric optimization context which facilitates the trade-off analysis between mean and risk. In this 

work, we extend the standard notation in (Jimbo et al., 2011); we include the matrix weights 

representation and some new prospective to the model. 

2.4 Modelling and Problem Formulation  

We set the fitness function      
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Where a) is the weight constraint; b) is the stochastic constraint and c) the cardinality constraint. Such 

problem cannot be solved analytically. We propose an efficient computational approach called Genetic 

Algorithm (GA), which is part of evolutionary algorithm representing a powerful tool for obtaining 

optimal solution for complex optimization problems. 

3 Genetic Algorithm Based Approach 

The Genetic Algorithm (GA) is a metaheuristic designed to find, generate, or select a heuristic (partial 

search algorithm) that may provide a sufficiently good solution to an optimization problem, especially 

with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a 

set of solutions, which is too large to be completely sampled (Eiben A.E et al., 1994).  Metaheuristics 

may make few assumptions about the optimization problem being solved, and so they may be usable 

for a variety of problems. Most literature on metaheuristics is experimental in nature, describing 

empirical results based on computer experiments with the algorithms. But some formal theoretical 

results are also available, often on convergence and the possibility of finding the global optimum 

(Andrzej D., 2002), (Ting Chuan-Kang, 2005) and (Janikow et al., 1991). Many metaheuristic methods 

have been published with claims of novelty and practical efficacy. While the field also features high-

quality research, unfortunately many of the publications have been of poor quality; flaws include 

vagueness, lack of conceptual elaboration, poor experiments, and ignorance of previous literature 

(Goldberg D.E. 1989), (Janikow et al., 1991) and (Andrzej D. 2002). The GA starts with a population of 

randomly generated solutions called chromosomes to explore the solution space of a problem. Then, 

the GA searches improvement of solutions through the number of iterations called generations. The 

performance of each solution is evaluated by a fitness function, which always contains the objective 

function. In each generation, relatively good solutions have the higher chance to be selected for 
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reproduction of the offspring by genetic operators- crossover and mutations. Markowitz’s original work 

was based on the rule that the investor does not consider expected increases in return as a desirable 

and the variance undesirable. Of course, this works well under specific assumptions and constraints on 

the optimization problem. The quadratic programming approach is used in an elegant way to find the 

solution. But when these assumption are relaxed, the need to look for new methods to attack the 

problem becomes imminent.  In this work, we propose a genetic algorithm (GA) method for portfolio 

optimization with transaction cost.  The proposed GA starts with a population of randomly generated 

solutions called chromosomes to explore the solution space of a problem. Then, the GA searches 

improvement of solutions through the number of iterations called generations. The performance of 

each solution is evaluated by a fitness function, which always contains the objective function. In each 

generation, relatively good solutions have the higher chance to be selected for reproduction of the 

offspring by genetic operators- crossover and mutations (Jimbo et al., 2013a, 2013b). Here, constraints 

will be incorporated in the code by simple restriction on the parameters that are used in the model. 

3.1 Algorithm 

The algorithm for solving GA is presented in detail in this section.  

Input: Instance X and random initial weight matrix 0w with n k  zeros row at random positions and each 

row sums to 1. 

A - Set Constraints

 (1) Basic constraints: Sum wi=1

 (2) Boundary constraints: wi are uniform distribution in (0,1) 

 (3) Probabilistic constraints: loss in the constructed portfolio is less than 1% of the total portfolio 

 (4) Cardinality constraint: Fixe K<Z (all generations) 

B – Genetic Algorithm Operations

 Operations: There are on weight matrices w=(wi) from the population. There is also a 

feasibility operator. 

 Selection: Partially elastic 3-tournament 

 Mutation: Perturb a random row 

 Crossover: Perturb every row from the top 1%  of the population 

 Population Size: 100 

 Risk aversion 0.5  , cardinality  
2

n
k 

Output: Optimal weight matrix 
*w which the fitness function is optimal (minimal). 

4 Experiments and Results 

To illustrate the features of the GA portfolio approach developed in this paper (GA-optimizer), we 

consider the historical data of return of eight assets in eight years. The assets are widely used indexes: 

U.S. three – months treasury bills, U.S. long – term government bonds, S&P 500, Wilshire 5000, 

NASDAQ, Lehman Brothers corporate bond index, EAFE foreign stock index, and Gold. In mathematical 

interpretation, this data is an 8 by 8 matrix, where columns represent assets and rows are value of the 
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asset in a given year. By multiplying each asset by the corresponding weight and summing each row, 

we obtain the portfolio value at the given year. Finally, comparing the highest portfolio value will guide 

us to the best construction possible. In the next section, we will present our results in exhibit 1 to 5 

using the above data.    

4.1 Results and Comparisons on Efficient Frontiers 

We now compare the obtained efficient frontiers. The results are shown in exhibit 2 with comment of 

the findings. 

Figure 1:  Cost of best mean and worst weight matrices and Mean portfolio value over generation time 

The combinations along the upper edge represent the mean, best and worst weights matrices over 

generation time. It can be seen that as the mean portfolio value increases, the means transaction cost 

also increases. This indicates a perfect correlation between both variables. Also the increase in mean 

portfolio value slows down faster (around 500 generation time) than the mean transaction cost (after 

500 generation time), such a split may effectively control the portfolio optimal boundaries. 
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Figure 2: Visualization of Efficient frontier for the minimal cost matrix

The number of portfolios in the efficient frontier increases sharply over generation time and stabilized 

after 2000 generation periods. We observe a perfect correlation between the mean optimal portfolio 

value and the mean transaction cost over time. This observation reinforces the conviction that efficient 

constraints and transaction cost are important tool used to control the portfolio performance over 

time. 

Figure 3: Comparison of correlation and partial correlation between stocks

The figures show left to right, the correlation and partial correlation in combined three assets over 

generation time. At around 1500 generation time, both correlation and partial correlation become lest 

variable. Figures at the bottom show from left to right the expected shortfall (ES) between two 

consecutive generation periods. We observe a relative increase of ES to reach a stable level of 0.57 over 

time. These results indicate risk reduction over time due to learning. 
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Figure 4: number of changes until feasibility and Mean percentage gain per generation 

The figures from left to right the mean number of change until feasibility for each portfolio and the 

mean percentage gain per generation. Both measures highly fluctuate over generation periods 

indicating. The fast increase is located around 500 generation periods, such information is important 

as it may help to determine optimal time horizon and increase the performance of optimal portfolio. 
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Figure 5: 3-D plot- Visualisation of weights at all time of the minimal cost portfolio 

The 3-D plot visualization of weights at all time of the minimal cost portfolio over 50, 1000, 2000 and 

2500 generation periods. It can be seen that a slow increase in the weight matrices over generation 

time or optimal portfolio values, but such increase is stops after 2000 generation periods. 

4.2 Data 

Data are recorded on the tables below 

Table 1.  Assets returns (in %) 

Table 2. Statistical comparison of portfolios derived with and without transaction cost 

5 Discussion 

We have performed the GA – optimizer on eight real world assets, using eight possible realisations of 

their join return rates. Historical data from weekly return in eight years from 2002 to 2010 were used 

as likely realisations.  Although our method performs very well and converges to optimal solution in 

100 generations depending on the case, we have still not yet investigated the kind of improvement we 

may have when drastically increase the number of assets and number of generations and also how the 

optimal solution will react to both simultaneous increase and decrease of return and risk. Another 

question is whether we could have any direct relationship between assets correlation and algorithm 

performance in a time dependent setup and/or how we can improve the accuracy of the multi-period 

portfolio problem. 

It will be interesting to work on these extensions of the present results in the future investigations.  

6 Conclusion 

The objective of this paper was to address the portfolio optimization problem subject to exponential 

transaction costs and examine the effects of the transaction costs on the derived optimal portfolio, 

along  with visualisation of the obtained solutions.   By incorporating the exponential transaction cost 

function directly into the fitness function, we set up a more realistic framework for the optimal solution. 

The proposed problem has nonlinear transaction cost and stochastic constraints, thus the genetic 

Year Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

1 7.5 -5.8 -14.8 -18.5 -30.2 2.3 -14.9 67.7

2 
8.4 2 -26.5 -28.4 -33.8 0.2 -23.2 72.2 

3 
6.1 5.6 37.1 38.5 31.8 12.3 35.4 -24 

4 
5.2 17.5 26.6 26.6 28 15.6 2.5 -4 

5 
5.5 0.2 -7.4 -2.6 9.3 3 18.1 20 

6 
7.7 -1.8 6.4 9.3 14.6 1.2 32.6 29.5 

7 
10.9 -2.2 18.4 25.6 30.7 2.3 4.8 21.2 

8 
12.7 -5.3 32.3 33.7 36.7 3.1 22.6 29.6 

Instance Mean Standard Deviation 

Without transaction cost 331.32 59.65 

With transaction cost 120.21 56.37 
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algorithm can be applied to solve the problem. The usual strategy to deal with the transaction cost 

problems has been to use additional constraints and linear conditions. However ignoring transaction 

cost will often lead to inefficient optimal portfolio.  Finally, we found that the Genetic Algorithm has 

the following interesting features important for quantitative finance: 

 GA reassures a higher chance of reaching a global optimum by starting with multiple random search 

points. 

 GA uses efficiently crossover to exchange attribute among potential solutions.  

 GA is fast converging reproducing the process of suboptimal solutions. 

Since searching such solution was achieved after few generation runs with reasonable computational 

time, we decided to compare the result with exponential transaction with our previous result without 

transaction cost. We uncovered that there is some statistically significant difference in the portfolio 

performance when the transaction cost is implemented.  In this respect, transaction cost may play a 

role of regularization for portfolio rebalancing over time. Future direction of the research includes the 

investigation of new strategies for improving the performance of the GA optimizer by either combining 

the features of different algorithms or modelling constraints of investor’s preference as well as market 

norms or to introduce new forms of transaction cost functions and more flexible algorithms. 
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