Page 1 of 19

European Journal of Applied Sciences – Vol. 12, No. 1

Publication Date: February 25, 2024

DOI:10.14738/aivp.121.16228

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor

Computation for Human Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied

Sciences, Vol - 12(1). 77-95.

Services for Science and Education – United Kingdom

Gamma Ray Energy Absorption Buildup Factor Computation for

Human Tissues in Energy Range of Medical Radionuclides Up to

10 Mean Free Paths

Dariush Sardari

ORCID: 0000-0002-9400-8243

Department of Medical Radiation Engineering, Science and Research Branch,

Islamic Azad University, Tehran, Iran

Bashir Bashiri

Department of Chemistry and Biotechnology, Tallinn University of Technology,

Tallinn, Estonia

Mehrnaz Zehtabvar

Department of Chemistry and Biotechnology, Tallinn University of Technology,

Tallinn, Estonia

Shahnaz Hashemi

Department of Medical Radiation Engineering, Science and Research Branch,

Islamic Azad University, Tehran, Iran

Leila Anvariazar

Department of Medical Radiation Engineering, Science and Research Branch,

Islamic Azad University, Tehran, Iran

ABSTRACT

Gamma ray energy absorption buildup factors (EABF) have been meticulously

computed for a comprehensive set of 16 human tissues, encompassing breast, lung,

kidney, pancreas, liver, eye lens, thyroid, brain, ovary, heart, large intestine, blood,

skin, spleen, muscle, and cortical bone. These calculations encompass photon

energies inherent to prevalent radionuclides, spanning from 0.021 to 1.25 MeV,

while delving into penetration depths reaching up to 10 mean free paths (mfp), all

accomplished via the utilization of MCNPX2.6. The outcomes underscore the pivotal

role of chemical composition of tissue in determining EABF, shedding light on the

substantial influence this factor wields. Particularly noteworthy is the observation

that cortical bone distinctly exhibits significantly lower EABF values compared to

the other tissues under investigation. Leveraging the EABF values furnished in this

study offers a powerful means of regulating dose levels for both therapeutic and

diagnostic applications, contributing to the precise administration of radiation- based medical interventions.

Keywords: Buildup factors; Human tissues; MCNP; Gamma-ray; Photon dose

Page 2 of 19

Services for Science and Education – United Kingdom 78

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

INTRODUCTION

The interaction between photons and attenuating materials results in the division of their

energy spectrum into two primary components: uncollided and collided photons. The

uncollided category encompasses photons that have undergone no interaction with the

attenuating material. In contrast, the collided category involves photons that have experienced

single or multiple scatterings, along with secondary photons like X-rays resulting from

Bremsstrahlung radiation or gamma rays arising from electron-positron annihilation.

According to the defined terms, the buildup factor (BF) is the ratio of the total response

(combining uncollided and collided) to the uncollided response[1]

.

Given that the BF is a crucial parameter in radiation shielding tasks, numerous studies have

been conducted to estimate this parameter in various media, including soft tissue[2–4], blood,

bone, brain, breast, eye lens, lung, adipose tissue, muscle, and ovary[1,5,6]. Additionally, BF

estimation has been carried out for certain hydrocarbons acting as neutron moderators[7]and

for specific natural rocks[8,9]

.

The BF holds critical significance not only in shield design but also in dosimetry and

radiotherapy treatment plans[10]. In medical applications, photons (Gamma and X-rays)

predominantly find use in radiotherapy and diagnostic procedures, exposing various body

tissues to photon radiation. Consequently, the BF of photons becomes a pivotal parameter in

predicting the distribution and absorption of flux and dose within biological molecules, along

with other photon interaction parameters such as mass attenuation coefficients and effective

atomic numbers in biological materials[4,5,11,12]. This understanding is crucial for assessing

potential health risks and ensuring radiation doses remain within safe limits. Moreover, the

buildup of photons within tissues can lead to variations in radiation dose distribution,

emphasizing the need for accurate BF data[10,13]. Thus, the acquisition of information

concerning the interactions of these radiations with the body stands as an indispensable

dataset for radiation safety, precise dose estimation, and reliable diagnostic and therapeutic

outcomes.

Given the scarcity of prior evidence regarding the estimation of EABF for human organs and

tissues within the energy range of these medical sources, it is noteworthy to mention that

Manohara et al.[5] have undertaken the calculation of gamma ray EABF for human organs and

tissues relevant to radiotherapy and diagnostics using the GP-fitting method. However, it's

important to note that they have not provided exact numerical values, but rather presented

graphs exclusively. In the light of this context, the present article endeavors to address this

knowledge gap comprehensively. The overarching objective of this study is to meticulously

compute the gamma ray energy absorption buildup factor (EABF) within the energy spectrum

of medical radioisotopes, encompassing diverse human organs, and extending the analysis to

encompass penetration depths of up to 10 mean free paths (mfp). This effort aims to deliver

valuable quantitative insights where previous data might have been limited to graphical

representations.

Various methods have been developed and employed to calculate the BF, including Monte Carlo

simulation[6,14–16], G-P fitting approximation[5,6,17–21], experimental techniques[20,22,23], invariant

embedding[24], and the moment method[25]. Monte Carlo N-Particle (MCNP) simulations have

Page 3 of 19

79

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

been demonstrated to possess reliable capabilities in estimating the buildup factor across a

broad energy range and different density materials (such as water[16], hydrocarbons[7]), and

high-density materials like tungsten[15]. Therefore, the calculations are conducted using the

MCNPX 2.6 code. In contrast to the extensive study conducted by Yazdani Darki et al.[26], which

focused on the estimation of mass attenuation coefficients for 16 human organs across a

spectrum of 10 medical radioisotopes, our research stands out for its targeted strength in

exploring the gamma ray EABF. While their work provided valuable insights into mass

attenuation, our study takes a focused approach to gamma ray EABF for a diverse set of 16

human tissues. This deliberate emphasis on EABF not only complements but also significantly

strengthens the existing body of knowledge, providing a more detailed and comprehensive

understanding of radiation interactions crucial for medical applications.

The structure of the paper is organized as follows: Section 2 extensively and transparently

elaborates on the materials and methods, outlining the human organs under investigation, the

energy range, and simulation geometry. Section 3 is dedicated to the validation of the

simulation, followed by the presentation and discussion of results in Section 4.

MATERIALS AND METHODS

The geometry of simulation involves concentric spheres containing the materials of interest. A

point isotropic sources is positioned at the center of the sphere. The radius of each sphere

extends up to 10 mean free paths (mfp). To determine the average surface flux, the *F2 Tally

card is employed on the surface of each sphere. The flux of uncollided particles is separated

using FT and FU cards. Both photons and electrons are transported simultaneously in particle

mode p,e. Both electron and photon modes were incorporated into this model, designated as

mode p,e. To exclude coherent (Rayleigh) scattering and focus radiation interactions solely on

Pair production, Compton (incoherent) scattering, and the photoelectric effect, the Phys:p card

was implemented. Additionally, to eliminate secondary electrons generated as a result of these

interactions, the Phys:e card was employed[27]

.

The mean free path (mfp) of photons in the corresponding medium is the reciprocal of the total

linear attenuation coefficient (μ), as defined by equation 1. The total mass attenuation

coefficients are obtained from XCOM data and then converted to total attenuation using

equation 2.

mfp =

1

μ

(1)

μ = ρ. μm (2)

BF is calculated using the following correlation:

BF =

RUncollided+RCollided

RUncollided

= 1 +

RCollided

RUncollided

(3)

The term "RCollided" denotes photons that have encountered interactions (such as Compton

scattering) prior to reaching the tallying surface, while "RUncollided" signifies photons that

successfully reached the tallying surface without any interaction. Table 1 offers details on the

Page 4 of 19

Services for Science and Education – United Kingdom 80

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

composition and density of human tissues[26,28], while Table 2 presents the mass attenuation

coefficients of human tissues at the gamma energies of interest, sourced from the NIST XCOM

database[26]

.

Table 1: Composition and density of human tissues under study[26]

Materials Density

(g/cm3

)

Weight fraction (%)

H C N O Na P S Cl K Ca Fe Mg I

Breast 1.02 0.106 0.332 0.03 0.527 0.001 0.001 0.002 0.001 - - - - -

Lung 1.05 0.103 0.105 0.031 0.749 0.002 0.002 0.003 0.003 0.002 - - - -

Kidney 1.05 0.103 0.132 0.03 0.724 0.002 0.002 0.002 0.002 0.002 0.001 - - -

Pancreas 1.04 0.106 0.169 0.022 0.694 0.002 0.002 0.001 0.002 0.002 0.001 - - -

Liver 1.06 0.102 0.139 0.03 0.716 0.002 0.003 0.003 0.002 0.003 - - - -

Eye lens 1.07 0.096 0.195 0.057 0.646 0.001 0.001 0.003 0.001 0.002 0.001 - - -

Thyroid 1.05 0.104 0.119 0.024 0.746 0.002 0.001 0.001 0.002 0.001 - - - 0.001

Brain 1.04 0.107 0.145 0.022 0.712 0.002 0.004 0.002 0.003 0.003 - - - -

Ovary 1.05 0.105 0.093 0.024 0.768 0.002 0.002 0.002 0.002 0.002 - - - -

Heart 1.06 0.103 0.121 0.032 0.734 0.001 0.001 0.002 0.003 0.002 - 0.001 - -

Large intestine 1.03 0.106 0.115 0.022 0.751 0.001 0.001 0.001 0.002 0.001 - - - -

Blood 1.06 0.102 0.110 0.033 0.745 0.001 0.001 0.002 0.003 0.002 - 0.001 - -

Skin 1.09 0.100 0.204 0.042 0.645 0.002 0.001 0.002 0.003 0.001 - - - -

Spleen 1.06 0.103 0.113 0.032 0.741 0.001 0.003 0.002 0.002 0.003 - - - -

Muscle (skeletal) 1.05 0.102 0.143 0.034 0.710 0.001 0.002 0.003 0.001 0.004 - - - -

Cortical bone 1.95 0.034 0.165 0.042 0.435 0.001 0.103 0.003 - - 0.225 - 0.002 -

Table 2: Mass attenuation coefficient of body tissues under study[26]

Radionuclide Pd-103 I-125 Cs-131 Tc-99 m Ba-133 Ir-192 Au-198 Cs-137 Ra-226 Co-60

Mean-energy

(MeV) 0.021 0.029 0.030 0.140 0.218 0.380 0.412 0.663 0.830 1.25

Breast 0.6214 0.3561 0.3403 0.1525 0.1322 0.1077 0.1043 0.0852 0.07686 0.06287

Lung 0.74430 0.40180 0.38150 0.15260 0.13200 0.10740 0.10400 0.08498 0.07667 0.06271

Kidney 0.73430 0.39820 0.37820 0.15260 0.13200 0.10740 0.10400 0.08498 0.07667 0.06271

Pancreas 0.71630 0.39180 0.37250 0.15290 0.13230 0.10770 0.10430 0.08520 0.07687 0.06287

Liver 0.73920 0.39990 0.37980 0.15250 0.13180 0.10730 0.10390 0.08490 0.07660 0.06265

Eye lens 0.70280 0.38570 0.36680 0.15150 0.13110 0.10670 0.10330 0.08443 0.07617 0.06230

Thyroid 0.73320 0.39850 0.37860 0.15330 0.13220 0.10750 0.10410 0.08505 0.07673 0.06276

Brain 0.74150 0.40130 0.38110 0.15310 0.13240 0.10780 0.10440 0.08527 0.07694 0.06293

Ovary 0.73840 0.39970 0.37960 0.15290 0.13220 0.10760 0.10420 0.08513 0.07681 0.06283

Heart 0.75000 0.40440 0.38390 0.15260 0.13200 0.10740 0.10400 0.08498 0.07667 0.06271

Large intestine 0.70570 0.38750 0.36860 0.15290 0.13230 0.10770 0.10430 0.08523 0.07690 0.06289

Blood 0.73420 0.39790 0.37790 0.15250 0.13180 0.10730 0.10390 0.08491 0.07661 0.06266

Skin 0.68950 0.38100 0.36260 0.15200 0.13150 0.10710 0.10370 0.08475 0.07646 0.06254

Spleen 0.74250 0.40100 0.38070 0.15240 0.13180 0.10730 0.10390 0.08484 0.07655 0.06261

Muscle (skeletal) 0.73480 0.39830 0.37830 0.15250 0.13180 0.10730 0.10390 0.08491 0.07660 0.06265

Cortical bone 3.46000 1.44100 1.32000 0.15280 0.12630 0.10120 0.09784 0.07965 0.07180 0.05869

VALIDATION OF SIMULATION

To assess the credibility of the simulation model in computing BF values, the BFs were initially

computed for water and soft tissue, then compared with published data[16,27]. BF values

calculated using the MCNP code up to 10 mfp for water and soft tissue are detailed in Table 3

and 4, respectively. These tables also include previously reported BF values. Overall, the

calculated BFs exhibit substantial conformity with the published data, substantiating the

precision of our simulation. Discrepancies can be ascribed to variations in Monte Carlo models

and cross-section data libraries used.

Page 5 of 19

81

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

Table 3: Validation of buildup factor for water and comparison with previous studies

Energy

(MeV)

EABF (this

study) a

EABF[16] EABF[27] EABF[5]

Relative

difference (%)

(b-a)/b *100

Relative

difference (%)

(c-a)/c *100

Relative

difference (%)

(d-a)/d *100

1 mfp

0.2 3.30 3.53 3.30 -- 6.60 0 --

0.5 2.53 2.61 2.57 2.47 3.25 1.55 -2.42

1 2.06 2.14 2.08 2.11 3.83 0.96 2.36

2 1.71 1.73 1.73 -- -0.20 1.15 --

2 mfp

0.2 7.41 7.44 7.45 -- 0.39 0.53 --

0.5 4.99 4.95 5.09 4.84 -0.76 1.96 -3.09

1 3.54 3.6 3.60 3.59 1.76 1.66 1.39

2 2.54 2.3 2.58 -- -10.59 1.55 --

4 mfp

0.2 22.79 25 24.10 -- 8.81 5.43 --

0.5 12.71 12.5 12.82 12.40 -1.74 0.85 -2.5

1 7.35 7.21 7.61 7.54 -2.00 3.41 2.51

2 4.37 4.75 4.58 -- 7.89 4.58 --

7 mfp

0.2 74.37 66 79.21 -- -12.69 6.11 --

0.5 33.14 31 31.00 31.97 -6.92 -6.90 -3.65

1 15.34 14.5 15.53 15.68 -5.86 1.22 2.16

2 7.89 6.36 7.74 -- -24.19 -1.93 --

10 mfp

0.2 175.67 157 201.48 -- -11.89 12.81 --

0.5 66.24 60 70.3 62.57 -10.41 5.77 -5.86

1 26.92 23 27.5 26.16 -17.06 2.10 -2.90

2 11.75 9.15 11.76 -- -28.47 0.08 --

Table 4: Validation of buildup factor for soft tissue and comparison with previous

studies

Energy (MeV) EABF (this study)

a

EABF[16] EABF[27] Relative difference (%)

(b-a)/b *100

Relative difference (%)

(c-a)/c *100

1 mfp

0.2 3.27 3.24 3.32 -0.98 1.50

0.5 2.53 2.50 2.56 -1.04 1.17

1 2.06 2.04 2.08 -0.91 0.96

2 1.71 1.70 1.73 -0.79 1.15

2 mfp

0.2 7.33 7.39 7.51 0.69 2.39

0.5 5.00 4.9 5.07 -2.11 1.38

1 3.53 3.5 3.58 -1.12 1.39

2 2.54 2.5 2.57 -1.80 1.16

4 mfp

0.2 22.69 23 24.20 1.35 6.23

Page 6 of 19

Services for Science and Education – United Kingdom 82

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

0.5 12.81 12.7 12.92 0.90 0.85

1 7.37 7.2 7.34 2.39 -0.40

2 4.37 4.5 4.60 2.80 5.00

7 mfp

0.2 72.90 80 77.18 8.87 5.54

0.5 33.27 32 29.00 -3.97 -14.72

1 15.43 14.5 15.02 -6.45 -2.72

2 7.91 7.3 7.48 -8.38 -5.74

10 mfp

0.2 178.15 183 198.01 2.65 10.02

0.5 67.14 61.1 74.24 -9.89 9.56

1 27.16 23 28.82 -18.10 5.75

2 11.80 11.1 11.36 -6.39 -3.87

RESULTS AND CONCLUSION

Tables 5 to 20 present the calculated energy absorption buildup factors (EABF) for the selected

human tissues. Each table provides EABF values corresponding to specific gamma energies of

medically relevant radionuclides, considering penetration depths up to 10 mfp.

Table 5: Gamma EABF for breast tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.41 1.65 2.01 2.47 2.84

I-125 0.029 1.90 2.64 3.93 5.88 7.94

Cs-131 0.030 1.97 2.79 4.26 6.64 8.90

Tc-99 m 0.140 3.55 8.18 26.03 87.43 218.62

Ba-133 0.218 3.23 7.24 22.45 71.95 176.28

Ir-192 0.380 2.75 5.75 15.93 45.04 96.85

Au-198 0.412 2.69 5.53 15.04 41.80 87.37

Cs-137 0.663 2.33 4.37 10.37 24.94 47.26

Ra-226 0.830 2.18 3.91 8.62 19.34 34.92

Co-60 1.25 1.94 3.19 6.23 12.25 20.56

Table 6: Gamma EABF for lung tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.32 1.50 1.75 2.07 2.28

I-125 0.029 1.73 2.27 3.15 4.44 5.55

Cs-131 0.030 1.79 2.38 3.40 4.88 6.20

Tc-99 m 0.140 3.47 7.83 23.92 75.96 184.13

Ba-133 0.218 3.19 7.03 21.15 65.66 156.52

Ir-192 0.380 2.74 5.64 15.36 42.50 90.32

Au-198 0.412 2.67 5.44 14.47 39.60 81.90

Cs-137 0.663 2.32 4.32 10.12 24.11 45.52

Ra-226 0.830 2.17 3.86 8.45 18.79 33.93

Co-60 1.25 1.93 3.16 6.14 12.06 20.17

Page 8 of 19

Services for Science and Education – United Kingdom 84

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

Ir-192 0.380 2.74 5.67 15.46 43.21 91.87

Au-198 0.412 2.68 5.47 14.65 40.17 83.27

Cs-137 0.663 2.32 4.33 10.20 24.32 45.93

Ra-226 0.830 2.17 3.87 8.49 18.94 34.26

Co-60 1.25 1.93 3.17 1.93 3.17 20.25

Table 11: Gamma EABF for thyroid tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.32 1.51 1.77 2.10 2.30

I-125 0.029 1.74 2.29 3.19 4.49 5.69

Cs-131 0.030 2.79 2.41 3.47 4.97 6.39

Tc-99 m 0.140 3.39 7.45 21.71 65.04 152.62

Ba-133 0.218 3.15 6.80 19.64 58.43 136.84

Ir-192 0.380 2.71 5.52 14.61 39.77 83.12

Au-198 0.412 2.65 5.32 15.41 37.10 76.19

Cs-137 0.663 2.30 4.25 9.83 23.18 43.55

Ra-226 0.830 2.16 3.81 8.23 18.22 32.77

Co-60 1.25 1.92 3.13 6.04 11.86 19.80

Table 12: Gamma BF for brain tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.32 1.50 1.76 2.08 2.29

I-125 0.029 1.73 2.28 3.18 4.50 5.60

Cs-131 0.030 1.79 2.40 3.44 4.93 6.30

Tc-99 m 0.140 3.48 7.84 23.87 76.34 184.47

Ba-133 0.218 3.19 7.04 21.07 65.69 157.32

Ir-192 0.380 2.74 5.64 15.34 42.51 90.27

Au-198 0.412 2.67 5.44 14.47 39.52 81.73

Cs-137 0.663 2.32 4.32 10.13 24.11 45.44

Ra-226 0.830 2.17 3.86 8.45 18.78 34.28

Co-60 1.25 1.93 3.16 6.14 12.07 20.26

Table 13: Gamma EABF for ovary tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.32 1.51 1.76 2.09 2.28

I-125 0.029 1.74 2.28 3.18 4.46 5.63

Cs-131 0.030 1.80 2.40 3.43 4.95 6.33

Tc-99 m 0.140 3.48 7.85 23.95 76.90 186.36

Ba-133 0.218 3.19 7.05 21.16 66.03 158.26

Ir-192 0.380 2.74 5.65 15.37 42.61 90.81

Au-198 0.412 2.67 5.44 14.56 39.70 82.25

Cs-137 0.663 2.32 4.32 10.13 24.16 45.64

Ra-226 0.830 2.17 3.87 8.46 18.83 34.00

Co-60 1.25 1.93 3.16 6.15 12.08 20.18

Page 9 of 19

85

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

Table 14: Gamma EABF for heart tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.31 1.49 1.74 2.05 2.25

I-125 0.029 1.72 2.25 3.12 4.39 5.43

Cs-131 0.030 1.78 2.37 3.37 4.80 6.09

Tc-99 m 0.140 3.47 7.81 23.66 75.33 181.25

Ba-133 0.218 3.19 7.01 21.00 65.12 155.02

Ir-192 0.380 2.73 5.63 15.25 42.24 89.73

Au-198 0.412 2.67 5.43 14.46 39.40 81.52

Cs-137 0.663 2.32 4.31 10.11 24.02 45.35

Ra-226 0.830 2.17 3.86 8.43 18.74 33.85

Co-60 1.25 1.93 3.16 6.14 12.05 20.15

Table 15: Gamma EABF for large intestine tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.34 1.54 1.81 2.17 2.39

I-125 0.029 1.77 2.36 3.33 4.77 6.07

Cs-131 0.030 1.83 2.49 3.60 5.26 6.84

Tc-99 m 0.140 3.49 7.93 24.46 79.32 192.84

Ba-133 0.218 3.20 7.09 21.54 67.41 162.75

Ir-192 0.380 2.79 5.81 16.07 45.00 92.13

Au-198 0.412 2.68 5.46 14.63 40.19 83.40

Cs-137 0.663 2.32 4.33 10.21 24.40 46.06

Ra-226 0.830 2.17 3.87 8.49 18.95 34.29

Co-60 1.25 1.93 3.17 6.17 12.11 20.27

Table 16: Gamma EABF for blood tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.32 1.50 1.75 2.09 2.30

I-125 0.029 1.73 2.26 3.12 4.41 5.42

Cs-131 0.030 1.79 2.38 3.37 4.84 6.09

Tc-99 m 0.140 3.47 7.79 23.56 74.67 180.71

Ba-133 0.218 3.19 7.01 20.92 64.85 155.08

Ir-192 0.380 2.73 5.63 15.29 42.24 89.45

Au-198 0.412 2.67 5.43 14.41 39.34 81.33

Cs-137 0.663 2.32 4.31 10.09 24.01 45.39

Ra-226 0.830 2.17 3.86 8.43 18.73 33.83

Co-60 1.25 1.93 3.16 6.13 12.03 20.15

Table 17: Gamma EABF for skin tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.35 1.55 1.84 2.21 2.43

I-125 0.029 1.79 2.40 3.42 4.89 6.35

Cs-131 0.030 1.85 2.53 3.70 5.45 7.10

Tc-99 m 0.140 3.50 7.97 24.63 80.42 196.40

Ba-133 0.218 3.21 7.12 21.63 68.02 164.28

Page 10 of 19

Services for Science and Education – United Kingdom 86

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

Ir-192 0.380 2.74 5.68 15.60 43.60 92.74

Au-198 0.412 2.68 5.48 14.73 40.40 84.23

Cs-137 0.663 2.32 4.34 10.23 24.47 46.21

Ra-226 0.830 2.17 3.88 8.51 19.01 34.34

Co-60 1.25 1.94 3.17 6.18 12.14 20.30

Table 18: Gamma EABF for spleen tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.32 1.50 1.75 2.07 2.27

I-125 0.029 1.73 2.27 3.16 4.46 5.58

Cs-131 0.030 1.79 2.39 3.41 4.89 6.22

Tc-99 m 0.140 3.48 7.85 24.01 76.70 185.18

Ba-133 0.218 3.19 7.05 21.13 65.81 156.54

Ir-192 0.380 2.74 5.65 15.40 42.81 90.47

Au-198 0.412 2.68 5.45 14.52 39.83 82.06

Cs-137 0.663 2.32 4.33 10.15 24.16 45.65

Ra-226 0.830 2.17 3.87 8.46 18.86 33.89

Co-60 1.25 1.93 3.17 6.16 12.12 20.10

Table 19: Gamma EABF for Muscle tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.32 1.51 1.76 2.09 2.30

I-125 0.029 1.74 2.29 3.19 4.52 5.64

Cs-131 0.030 1.80 2.41 3.46 5.01 6.35

Tc-99 m 0.140 3.48 7.84 23.99 76.58 185.76

Ba-133 0.218 3.19 7.05 21.17 65.95 157.74

Ir-192 0.380 2.74 5.65 15.36 42.73 90.43

Au-198 0.412 2.67 5.44 14.55 39.67 82.21

Cs-137 0.663 2.32 4.32 10.15 24.16 45.62

Ra-226 0.830 2.17 3.86 8.45 18.81 34.01

Co-60 1.25 1.93 3.16 6.15 12.08 20.20

Table 20: Gamma EABF for cortical bone tissue

Radionuclide Energy (MeV) 1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Pd-103 0.021 1.05 1.07 1.10 1.12 1.13

I-125 0.029 1.12 1.18 1.26 1.36 1.41

Cs-131 0.030 1.14 1.20 1.29 1.40 1.45

Tc-99 m 0.140 2.70 4.75 9.93 21.62 39.10

Ba-133 0.218 2.75 5.12 11.70 27.89 55.47

Ir-192 0.380 2.51 4.64 10.74 25.56 50.97

Au-198 0.412 2.47 4.54 10.43 24.55 48.72

Cs-137 0.663 2.20 3.82 8.19 18.27 33.81

Ra-226 0.830 2.07 3.49 7.13 15.09 27.22

Co-60 1.25 1.87 2.94 5.53 10.65 17.70

Page 11 of 19

87

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

Across all examined materials except cortical bone, the highest EABF is achieved at the gamma

energy of the Tc-99m radionuclide (0.14 MeV). This phenomenon results from the prevalence

of multiple Compton scatterings, which are the dominant interactions at this energy range (0.14

MeV). Notably elevated BF values characterize the Compton scattering region[1,6]. Above this

energy threshold, the growing significance of pair production gradually reduces the EABF as

photon energy increases. Pair production leads to the removal of one photon, giving rise to the

production of an electron-positron pair.

Consequently, fewer photons persist within the medium, causing the BF to decline. Cortical

bone primarily consists of high-Z materials like calcium (Ca) and phosphorus (P), in contrast to

other tissues predominantly composed of low-Z materials such as hydrogen (H) and oxygen

(O). Consequently, the EABF for cortical bone reaches its peak at a higher energy level (0.218

MeV) compared to other tissue materials. Additionally, the maximum EABF for cortical bone

generally remains lower than the peak observed for other tissues across all thicknesses.

Figure 1 visually illustrates the trend of EABF, showcasing the highest value for breast tissue

and the lowest for cortical bone. This phenomenon is consistent with findings from other

studies as well[5,6]. This contrast can be explained by considering the equivalent atomic number

(Zeq) of the compound. Breast tissue, characterized by a low Zeq, contrasts with cortical bone

where medium-Z elements carry a higher weight fraction.

0.00

50.00

100.00

150.00

200.00

250.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (MeV)

Breast Tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Page 12 of 19

Services for Science and Education – United Kingdom 88

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (MeV)

Lung tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Kidney tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (MeV)

Pancreas tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Page 13 of 19

89

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (MeV)

Liver tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

250.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (MeV)

Eye lens tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (MeV)

Thyroid tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Page 14 of 19

Services for Science and Education – United Kingdom 90

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Brain tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Ovary tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Heart tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Page 15 of 19

91

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

0.00

50.00

100.00

150.00

200.00

250.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Large intestine tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Blood tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

250.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Skin tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Page 16 of 19

Services for Science and Education – United Kingdom 92

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

Figure 1: Variation of EABF with energy for investigated penetration depths

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Spleen tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

50.00

100.00

150.00

200.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Muscle tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

0.00

10.00

20.00

30.00

40.00

50.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EABF

Energy (meV)

Cortical bone tissue

1 mfp 2 mfp 4 mfp 7 mfp 10 mfp

Page 17 of 19

93

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

Figures 1 to 16 collectively demonstrate that EABF escalates with increasing penetration depth.

A larger penetration depth indicates a higher number of scattering events, thereby yielding

higher EABF values. Moreover, we successfully calculated the EABF for the human tissues,

extending our analysis across the energy spectrum of common medical radionuclides. The

validity of our values is substantiated through meticulous validation of our simulations against

existing literature data, specifically for water and soft tissues. This validation process ensures

the reliability and accuracy of our calculated EABF values, allowing for informed and confident

utilization of the results in medical applications, radiation safety considerations, and treatment

planning.

References

1. Jarrah, I., Radaideh, M. I., & Kozlowski, T. (n.d.). Determination and validation of photon energy absorption

buildup factor in human tissues using Monte Carlo simulation.

https://doi.org/10.1016/j.radphyschem.2019.03.008

2. Rafiei, M. M., Tavakoli-Anbaran, H., & Kurudirek, M. (2020). A detailed investigation of gamma-ray energy

absorption and dose buildup factor for soft tissue and tissue equivalents using Monte Carlo simulation.

Radiation Physics and Chemistry, 177, 109118. https://doi.org/10.1016/J.RADPHYSCHEM.2020.109118

3. Sardari, D., Abbaspour, A., Baradaran, S., & Babapour, F. (2009). Estimation of gamma- and X-ray photons

buildup factor in soft tissue with Monte Carlo method. Applied Radiation and Isotopes, 67(7–8), 1438–

1440. https://doi.org/10.1016/J.APRADISO.2009.02.033

4. Sardari, D., & Kurudirek, M. (2012). A semi-empirical approach to the geometric progression (GP) fitting

approximation in estimating photon buildup factor in soft tissue, water, and dosimetric materials.

International Journal of Physical Sciences, 7(44), 5852–5860. https://doi.org/10.5897/IJPS12.598

5. Manohara, S. R., Hanagodimath, S. M., & Gerward, L. (2011). Energy absorption buildup factors of human

organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics. Journal

of Applied Clinical Medical Physics, 12(4), 296–312. https://doi.org/10.1120/JACMP.V12I4.3557

6. Kadri, O., & Alfuraih, A. (2019). Photon energy absorption and exposure buildup factors for deep

penetration in human tissues. Nuclear Science and Techniques, 30(12), 1–9.

https://doi.org/10.1007/S41365-019-0701-4/TABLES/3

7. Kurudirek, M., Sardari, D., Khaledi, N., Çakir, C., & Mann, K. S. (2013). Investigation of X- and gamma ray

photons buildup in some neutron shielding materials using GP fitting approximation. Annals of Nuclear

Energy, 53, 485–491. https://doi.org/10.1016/J.ANUCENE.2012.08.002

8. Mahmoud, K. A., Sayyed, M. I., & Tashlykov, O. L. (2019). Gamma ray shielding characteristics and exposure

buildup factor for some natural rocks using MCNP-5 code. Nuclear Engineering and Technology, 51(7),

1835–1841. https://doi.org/10.1016/J.NET.2019.05.013

9. Obaid, S. S., Sayyed, M. I., Gaikwad, D. K., & Pawar, P. P. (2018). Attenuation coefficients and exposure

buildup factor of some rocks for gamma ray shielding applications. Radiation Physics and Chemistry, 148,

86–94. https://doi.org/10.1016/J.RADPHYSCHEM.2018.02.026

10. Pezhman Shirmardi, S., Adeli, R., Singh, V. P., Bagheri, R., & Tatari, M. (2017). A case study of energy

absorption buildup factors in some human bones for gamma energies 30 keV to 1.5 MeV. Journal of

Paramedical Sciences (JPS) Spring, 8. https://www.researchgate.net/publication/314843249

Page 18 of 19

Services for Science and Education – United Kingdom 94

European Journal of Applied Sciences (EJAS) Vol. 12, Issue 1, February-2024

11. Kurudirek, M., & Zdemir, Y. (2011). Energy absorption and exposure buildup factors for some polymers

and tissue substitute materials: photon energy, penetration depth and chemical composition dependence.

Journal of Radiological Protection, 31(1), 117. https://doi.org/10.1088/0952-4746/31/1/008

12. Chilton, A. B., Shultis, J. K., & Faw, R. E. (1984). Principles of radiation shielding. Prentice Hall Inc.,Old

Tappan, NJ.

13. Kurudirek, M., Doĝan, B., Ingeç, M., Ekinci, N., & Özdemir, Y. (2011). Gamma-ray energy absorption and

exposure buildup factor studies in some human tissues with endometriosis. Applied Radiation and

Isotopes, 69(2), 381–388. https://doi.org/10.1016/J.APRADISO.2010.11.007

14. Obaid, S. S., Sayyed, M. I., Gaikwad, D. K., Tekin, H. O., Elmahroug, Y., & Pawar, P. P. (2018). Photon

attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and

experimental results: a comparison study. Radiation Effects and Defects in Solids, 173(11–12), 900–914.

https://doi.org/10.1080/10420150.2018.1505890

15. Sardari, D., Baradaran, S., Mofrad, F. B., & Marzban, N. (2022). Monte Carlo calculation of buildup factors

for 50 keV–15 MeV photons in tungsten up to 15 mean free paths. Applied Radiation and Isotopes, 183,

110150. https://doi.org/10.1016/J.APRADISO.2022.110150

16. Sardari, D., Saudi, S., & Tajik, M. (2011). Evaluation of gamma ray buildup factor data in water with

MCNP4C code. Annals of Nuclear Energy, 38(2–3), 628–631.

https://doi.org/10.1016/J.ANUCENE.2010.09.007

17. Harima, Y., Sakamoto, Y., Tanaka, S., & Kawai, M. (1986). Validity of the Geometric-Progression Formula in

Approximating Gamma-Ray Buildup Factors. Nuclear Science and Engineering, 94(1), 24–35.

https://doi.org/10.13182/NSE86-A17113

18. Sayyed, M. I., AlZaatreh, M. Y., Matori, K. A., Sidek, H. A. A., & Zaid, M. H. M. (2018). Comprehensive study on

estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear

industries. Results in Physics, 9, 585–592. https://doi.org/10.1016/J.RINP.2018.01.057

19. Turhan, M. F., Akman, F., Kaçal, M. R., Polat, H., & Demirkol, İ. (2023). A study for gamma-ray attenuation

performances of barite filled polymer composites. Applied Radiation and Isotopes, 191, 110568.

https://doi.org/10.1016/J.APRADISO.2022.110568

20. Manjunatha, Hosamani, M. M., Hiremath, G. B., Vinayak, A., Singh, V. P., Bennal, A. S., & Badiger, N. M.

(2023). An experimental approach to determine the gamma radiation interaction mean free path and

exposure buildup factor for biomolecules. Applied Radiation and Isotopes, 201, 111012.

https://doi.org/10.1016/J.APRADISO.2023.111012

21. Basu, P., Sarangapani, R., & Venkatraman, B. (2019). Gamma ray buildup factors for conventional shielding

materials and buildup factors computed for tungsten with a thickness beyond 40 mean free paths. Applied

Radiation and Isotopes, 154, 108864. https://doi.org/10.1016/J.APRADISO.2019.108864

22. Meisberger, L. L., Keller, R. J., & Shalek, R. J. (1968). The Effective Attenuation in Water of the Gamma Rays

of Gold 198, Iridium 192, Cesium 137, Radium 226, and Cobalt 601. Https://Doi.Org/10.1148/90.5.953,

90(5), 953–957. https://doi.org/10.1148/90.5.953

23. Ponnunni Kartha, K. I., Kennel, G. N., & Cameron Madison, J. R. (1966). AN EXPERIMENTAL

DETERMINATION OF THE ABSORPTION AND BUILDUP FACTOR IN WATER FOR RADIUM, COBALT 60,

AND CESIUM 137 GAMMA RAYS*. JANUARY.

Page 19 of 19

95

Sardari, D., Bashiri, B., Zehtabvar, M., Hashemi, S., & Anvariazar, L. (2024). Gamma Ray Energy Absorption Buildup Factor Computation for Human

Tissues in Energy Range of Medical Radionuclides Up to 10 Mean Free Paths. European Journal of Applied Sciences, Vol - 12(1). 77-95.

URL: http://dx.doi.org/10.14738/aivp.121.16228

24. Shimizu, A., Onda, T., & Sakamoto, Y. (2004). Calculation of Gamma-Ray Buildup Factors up to Depths of

100 mfp by the Method of Invariant Embedding, (III). Journal of Nuclear Science and Technology, 41(4),

413–424. https://doi.org/10.1080/18811248.2004.9715503

25. Goldstein, H., & Wilkins, J. E. (1954). UNITED STATES ATOMIC ENERGY COMMISSION NYG-3075

CALCULATIONS OF THE PENETRATION OF GAMMA RAYS Final Report.

26. Yazdani Darki, S., & Keshavarz, S. (2020). Studies on mass attenuation coefficients for some body tissues

with different medical sources and their validation using Monte Carlo codes. Nuclear Science and

Techniques, 31(12), 1–15. https://doi.org/10.1007/S41365-020-00827-1/FIGURES/10

27. Vahabi, S. M., & Shamsaie Zafarghandi, M. (2020). Build-up factors for water and soft tissue by MCNP using

a co-centric multilayer model: comparative study. Journal of Instrumentation, 15(05), P05018.

https://doi.org/10.1088/1748-0221/15/05/P05018

28. ICRU Report 44, Tissue Substitutes in Radiation Dosimetry and Measurement – ICRU. (n.d.). Retrieved

October 8, 2023, from https://www.icru.org/report/tissue-substitutes-in-radiation-dosimetry-and- measurement-report-44/