

Volume 4, No. 1; February 2016

TABLE OF CONTENTS

EDITORIAL ADVISORY BOARD

DISCLAIMER

I

II

An Efficient Algorithm for Forward Collision Warning Using Low Cost
Stereo Camera & Embedded System on Chip

Manoj Rajan
Prabhudev Patil
Sravya Vunnam

01

Spatial Grasp Language

Peter Simon Sapaty
12

Evidential Segmentation Scheme of Bone Marrow Images
Mourtada Benazzouz
Ismahan Baghli
Amine BENOMAR

37

EDITORIAL ADVISORY BOARD

Dr Zezhi Chen
Faculty of Science, Engineering and Computing; Kingston University London

United Kingdom

Professor Don Liu
College of Engineering and Science, Louisiana Tech University, Ruston,

United States

Dr Lei Cao
Department of Electrical Engineering, University of Mississippi,

United States

Professor Simon X. Yang
Advanced Robotics & Intelligent Systems (ARIS) Laboratory, University of Guelph,

Canada

Dr Luis Rodolfo Garcia
College of Science and Engineering, Texas A&M University, Corpus Christi

United States

Dr Kyriakos G Vamvoudakis
Dept of Electrical and Computer Engineering, University of California Santa Barbara

United States

Professor Nicoladie Tam
University of North Texas, Denton, Texas

United States

Professor Shahram Latifi
Dept. of Electrical & Computer Engineering University of Nevada, Las Vegas

United States

Professor Hong Zhou
Department of Applied Mathematics Naval Postgraduate School Monterey, CA

United States

Dr Yuriy Polyakov
Computer Science Department, New Jersey Institute of Technology, Newark

United States

Dr M. M. Faraz
Faculty of Science Engineering and Computing, Kingston University London

United Kingdom

DISCLAIMER

All the contributions are published in good faith and intentions to promote
and encourage research activities around the globe. The contributions are
property of their respective authors/owners and the journal is not
responsible for any content that hurts someone’s views or feelings etc.

An Efficient Algorithm for Forward Collision Warning Using
Low Cost Stereo Camera & Embedded System on Chip

1Manoj Rajan, 2Prabhudev Patil, and 3Sravya Vunnam
1Tata Consultancy Services

manoj.cr@tcs.com; prabhudev.patil@tcs.com,sravya.vunnam@tcs.com

ABSTRACT

Forward Collision Warning (FCW) systems in automobiles provide alerts to assist drivers in avoiding
the rear-side crashes. These devices currently use, radars as the main sensor. The increasing resolution
of imaging sensors, processing capability of hardware chipsets and advances in machine vision
algorithms, have pushed ahead the camera-based features. This paper discusses about a stereo
camera-based FCW algorithm that uses a pair of cameras for sensing forward collision situations.
Stereo camera based devices overcomes the disadvantages of using single camera for distance
measurements and at the same time with lesser cost compared to radar sensors. This paper provides
an overview of the system, sensors used, and details including novel state of the art algorithms that
detects vehicles and calculates distance from it, and how the algorithms are designed to be affordable
for low cost multi core embedded hardware platform meeting stringent real time performance
parameters. Novel, Enhanced Histogram of Gradients algorithm detects the presence of vehicle at
different scales and postures. Highly efficient stereo matching algorithm which operates at dynamic
sub-pixel level granularity provides accurate depth which helps to predict the time for collision
accurately. Long testing proves that system would meet the New Car Assessment Program test
requirements

Keywords: ADAS, FCW, NCAP, HOG, radar, camera sensor, vision, stereo matching, sub-pixel
interpolation

1 Introduction
Forward Collision Warning, is a feature that provides alerts intended to assist drivers in avoiding or
mitigating the harm caused by rear-end crashes. The FCW system may alert the driver to an approach
(or closing) conflict a few seconds before the driver would have detected such a conflict (e.g., if the
driver's eyes were off-the-road) so they can take any necessary corrective action (e.g., Apply hard
braking). The most important aspect of FCW feature is the timing of the alert to the driver. The goal is
to have sufficiently early true warnings and at the sametime to avoid false warnings.

2 Opportunity for Crash Avoidance Systems
As per the studies conducted by World Health Organization (WHO), every year, road crashes kill nearly
1.3 million people and injure between 20 and 50 million more. By 2020, unless action is taken, road
traffic injuries are predicted to double. The studies reveal that the driver is considered to be major
cause of all accidents, the other two being the environmental conditions and increased distraction
within the vehicle (for e.g.: the in-vehicle entertainment).A timely alert to the driver can help in
prevention of accidents

DOI: 10.14738/aivp.41.1582
Publication Date: 21st February, 2016
URL: http://dx.doi.org/10.14738/aivp.41.1582

Manoj Rajan, Prabhudev Patil, and Sravya Vunnam; An Efficient Algorithm for Forward Collision Warning
Using Low Cost Stereo Camera & Embedded System on Chip. Advances in Image and Video Processing,
Volume 4 No 1, February (2016); pp: 1-6

3 Forward Collision Warning Sensors
The primary FCW ranging device used on current production vehicles are either radar or LIDAR-based
sensors. Irrespective of the sensor used, FCW system should be able to detect, classify and track the
vehicles moving in front and at the same time discard the objects which are not of interest .It is critical
for an FCW system to have very high true positive detections and very minimal false warnings to be
qualified for usage in a production vehicle. .The camera based systems which are more common, uses
monocular camera. The systems which uses mono camera lacks in the ability of detection of distance
as accurate as RADAR and hence suffers in the computation of Time to Collide (TTC).The proposed
solution makes uses of a stereo camera which provides much better accuracy in terms of computation
of distance to the object of interest.

 Figure 1. Comparison of different FCW sensors

3.1 Stereo Camera Sensor
The stereo camera consists of two sensors of parallel optical axes and separated horizontally from
each other by a small pre-defined distance called baseline. The distance between the cameras and the
object can be measured depending upon the distance between the positions of the objects in both
pictures, the focal lengths of both cameras as well as the distance. Image processing techniques are
used to find the relation between objects in the left image w.r.t the right image. The amount of shift
in the coordinates of the object of interest in the right image w.r.t left image is the disparity. Using
the law of Triangulation, the distance of the object from the camera can be calculated provided the
baseline and focal length is known. Distance to an object of interest has inverse relationship with
disparity. The range and accuracy of distance calculations significantly depend on the resolution of the
camera and the distance between the optical axes of the two cameras.

Figure 2: Stereo Camera Geometry

URL: http://dx.doi.org/10.14738/aivp.41.1582 2

http://dx.doi.org/10.14738/aivp.41.1582

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

4 Sensing Algorithms
In this system, different types of vehicles are detected .The distances were measured for the vehicles
which are in path to the subject vehicle in the distance range of 5m to 80m with VGA resolution
camera. The average percentage error in these measurements was found to be in the range of less
than +/-5%. Subsequent sections discusses about the algorithms developed for the detection of
vehicles and calculation of distance to the detected vehicles.

4.1 Vehicle Detection
Detection of vehicles using camera images has been a well-researched topic. There are multiple
algorithms which are capable of doing this. The important aspect of a robust algorithm is its capability
to detect multiple kinds of vehicles under different environmental and lighting conditions with high
levels of accuracy. A novel algorithm was developed which has the capability of detecting vehicles
from as close as 5m to 80m of distance with VGA resolution camera. A robust method for detecting
the vehicles by using images captured by a mono or stereo camera (pair of imagers), the said method
characterized in being able to detect and calculate distances over very far ranges comprising the
processor implemented steps of computing the Histogram of Oriented Gradients (HOG) for finding out
the presence of vehicles in the image. Multiple scales and orientations of the objects can be detected
with enhancements done over traditional HOG. This is being achieved with the following approach.
First split the input image into multiple slices .The slices are formed based on the candidate object size
and the distance of targeted detection. The slices which correspond to the long distance regions are
interpolated may be to a factor of 2. On each slice, gradients are computed locally. Based on the
precomputed scales of object at different distances, multiple window sizes are chosen for HOG
computation and feature descriptors are trained with these specific windows sizes .These feature
descriptors are applied on the corresponding slice in which it is expected to detect an object. This
approach ensures that varying scales (or sizes) and the orientations of the objects are being detected.
At the same time, since the descriptors for different window sizes are computed simultaneously it
doesn’t consume additional computational bandwidth.

Detection was followed by a tracking algorithm which tracks the already detected targets using a
Kalman & Optical flow fused approach. The pictures below show the actual detection output of
algorithms (marked by bounding box) at various distances when subjected with multiple test videos.

Figure 3: Vehicle Detection output – Long, Medium & Short Range

The statistics below show the performance of the algorithm under different environmental conditions
for different types of vehicles on long hours of real time road data.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 3

Manoj Rajan, Prabhudev Patil, and Sravya Vunnam; An Efficient Algorithm for Forward Collision Warning
Using Low Cost Stereo Camera & Embedded System on Chip. Advances in Image and Video Processing,
Volume 4 No 1, February (2016); pp: 1-6

Table 1: Vehicle Detection – Algorithm Performance Statistics

4.2 Vehicle Detection
Major strength of stereo camera is the ability to depict the depth or distance information accurately.
Stereo matching or stereo correspondence algorithms are used to generate the disparity maps or the
depth maps. In this paper we introduce a highly efficient local algorithm that generates higher-
accuracy disparity values. The vehicle detection algorithm detects vehicles in front and generates the
Region of Interest (ROI) around the detected vehicle on the left image. This ROI is then searched in
the right image using a stereo correspondence algorithm. In this approach, matching is needed to be
done only for the required features which increases the accuracy and saves the computation time.
The matching is done using area-based correlation technique. Major challenge in stereo matching is
the false matches which happen more in larger distances as the object size becomes smaller.
Algorithms which based on the approximate range of the object, generates an interpolated or sub-
pixel level images. Levels of sub-pixels which can be selected can be 0.5, 0.1, 0.05 or 0.01 and
dynamically decided based on EHOG detection window size .Dynamic selection helps to reduce the
computationally complexity significantly. Since the matching happens at such fine levels of
interpolation the accuracy of matching and the disparity generation happens with high levels of
accuracy even at 80m distance with VGA resolution camera. Prior arts indicate that with VGA camera
stereo matching can generate high levels of accuracy only up to ranges of 40m.

Figure 4: Original Image & Interpolated Image (@ 0.05 sub-pixel)

The figures below show the original image and the interpolated image which is used for matching
generated at 0.05 sub-pixel accuracy. Once the matching information is obtained this is used for
calculating distance using triangulation principle

Algorithm

True
Detection
(Frame by
Frame %)

Miss detection
(Frame by frame

%)

False Detection
(Out of total

frames tested)

Vehicle
Detection

(up to 80m)
92% 8% 2%

URL: http://dx.doi.org/10.14738/aivp.41.1582 4

http://dx.doi.org/10.14738/aivp.41.1582

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

Table 2: Distance Computation – Algorithm Performance Statistics

Actual
Distance to

Vehicles

Distance
Computed

by
Algorithm

Error
Percentage

6.00 6.09 1.50
8.00 8.00 0.00

16.50 16.39 0.67
42.00 43.25 2.98
64.00 66.13 3.33
80.00 79.72 0.35

5 Implementation and Optimization on the embedded processor
Since the requirement of the system is to work in the vehicle, the algorithms and application would
need to be implemented on a hardware meeting real time performance .The stringent real time
requirement calls for processing the algorithms at a frame rate of 30 per second or a detection latency
of 33ms. Evaluation of different popular hardware platforms was done and Texas Instruments TDA2x
was identified as the suitable one for the system. TI’s TDA2x enables low-power, high-performance
vision-processing systems. It features two C66x Digital Signal Processor (DSP) cores and four Vision
Acceleration vision engines called EVE’s. The following step by step iterative design and
implementation methodology was adopted to optimize the performance of the algorithms.

Figure 5: Performance Optimization Methodology

Detailed analysis has been done on the strength of the different types of cores .i.e., DSP, Image
processor (EVE) and ARM Cortex .The following table gives the comparative performance of each of
the cores.

 Table 3: Estimated speed up in performance of different cores

Type of Operation Cortex A9 c66x DSP EVE

 16 bit integer 1x 2.5x 8-12x

 Single Precision float 1x 5x

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 5

Manoj Rajan, Prabhudev Patil, and Sravya Vunnam; An Efficient Algorithm for Forward Collision Warning
Using Low Cost Stereo Camera & Embedded System on Chip. Advances in Image and Video Processing,
Volume 4 No 1, February (2016); pp: 1-6

As the above table shows , EVE has a definite advantage on the algorithms which involve fixed point
arithmetic whereas DSP offers flexibility in supporting algorithms which require floating point
arithmetic to maintain the precision required for higher accuracy.

Based on the analysis done on the algorithm, the following partitioning is done for the HOG Vehicle
detection.

Figure 6: Partitioning of HOG algorithm on TDA2x

6 Conclusion
This paper discussed the development and initial testing results from an alternative FCA sensing
approach that uses a forward-looking stereo camera as a replacement for a radar/lidar device as the
sole Forward Collision Warning (FCW) sensing mechanism

This paper also provided a discussion about the state of the art algorithms which detects and approves
lead vehicle candidates, compute the distances to these candidates for the purposes of identifying
potential rear-end crash situations. An efficient implementation of the algorithm on a low cost
embedded hardware was also discussed. Results from initial testing indicate this system would be
capable of meeting the New Car Assessment Program (NCAP) Forward Collision warning confirmation
test requirements

REFERENCES

[1] Pre-Crash Scenario Typology for Crash Avoidance Research. National Highway Transportation Safety
Administration. - Najm, W.G., Smith, J.D., and Yanagisawa, M.

[2] Development and validation of functional definitions and evaluation procedures for collision
warning/avoidance systems. Highway Transportation Safety Administration. - Kiefer, R., LeBlanc, D.,
Palmer, M., Salinger, J., Deering, R., and Shulman, M.

[3] Histogram of Oriented Gradients (HOG) for Object Detection -Navneet Dalal and Bill Triggs

[4] FORWARD COLLISION WARNING SYSTEM CONFIRMATION TEST, February 2013 - US Department of
Transportation

[5] Empowering automotive vision with TI’s Vision Acceleration Pac – Texas Instruments

URL: http://dx.doi.org/10.14738/aivp.41.1582 6

http://dx.doi.org/10.14738/aivp.41.1582

Spatial Grasp Language (SGL)

Peter Simon Sapaty
Institute of Mathematical Machines and Systems, National Academy of Sciences, Ukraine;

peter.sapaty@gmail.com, sapaty@immsp.kiev.ua

ABSTRACT

 A full description of a high-level language for solving arbitrary problems in heterogeneous, distributed
and dynamic worlds, both physical and virtual, will be presented and discussed. The language is based
on holistic and gestalt principles representing semantic level solutions in distributed environments in
the form of self-evolving patterns. The latter are covering, grasping and matching the distributed spaces
while creating active distributed infrastructures in them operating in a global-goal-driven manner but
without traditional central resources. Taking into account the existing sufficient publications on the
approach developed, the paper will be showing only elementary examples using the Spatial Grasp
Language and key ideas of its networked implementation.

Keywords: gestalt psychology; spatial intelligence; spatial pattern matching; Spatial Grasp Language;
self-evolving scenarios; parallel networked interpretation; hybrid operations; integral solutions;
distributed control.

1 Introduction
We are witnessing a dramatic change in the character of national and international activity, especially
in crisis and conflict areas, with the use of asymmetric, unconventional, and hybrid solutions. They may
simultaneously involve economy, ecology, international relations, ethnicity, culture, law, religion, etc.,
defense and military too, occupying both physical and virtual environments. And these solutions may
need to be multidimensional and highly integral in order to succeed, aiming at the whole from start
rather than parts in hope to achieve this whole.

A new philosophy, methodology, and supporting high-level networking technology are being developed
oriented on effective management of distributed, dynamic and hybrid systems [1-6], which may be
useful within the context mentioned above. They are based on holistic and gestalt ideas [7-9] rather
than traditional communicating agents stemming from [10].

The approach (called over-operability [11] rather than traditional interoperability) allows for integral
global-goal-driven solutions in distributed environments. It has certain psychological background in
trying to follow existing ideas of how human mind operates by solving complex problems (like in waves,
streams, states, etc. [12]) and inherit them by information technologies [13].

The resultant Spatial Grasp Technology (SGT) with Spatial Grasp Language (SGL) as its key element has
been prototyped and tested with numerous researched applications [14-34]. In the most general terms
it operates as shown in Figure 1.

DOI: 10.14738/aivp.41.1922
Publication Date: 29st,February 2016
URL: http://dx.doi.org/10.14738/aivp.41.1922

http://dx.doi.org/10.14738/aivp.41.1922

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

Figure 1: How SGT Operates in General

A high-level scenario for any task in a distributed world is represented as an active self-evolving pattern
rather than traditional program, sequential or parallel. This pattern, expressing top semantics and key
decisions of the problem to be solved spatially propagates, replicates, modifies, covers and matches
the world, creating distributed operational infrastructures throughout it, with the final results retained
in the environments or returned as high level knowledge to the starting point.

The current paper describes, first time, the full specification of the latest, updated and improved,
version of SGL being currently used in a number of projects related to intelligent management and
control of large distributed dynamic systems with both civil and defence applications. It also serves as
an exemplary reference in a new patent on parallel and distributed mechanisms for SGL types of
languages, which is currently in progress (succeeding the previous patent on the approach [14]).

SGL is the latest and most advanced version in a sequence of spatial languages using free however
globally controlled movement of program code in networks, with the previous ones named as WAVE
[1], WAVE-WP (World Processing) [2] and DSL (Distributed Scenario Language) [15].

2 SGL Orientation and Peculiarities
SGL differs fundamentally from traditional programming languages. Rather than working with
information in a computer memory it allows us to directly move through, observe, and make any actions
and decisions in fully distributed environments, whether physical or virtual. In general, the whole
distributed world, which may be dynamic and active, is considered in SGL as a substitute to traditional
computer memory, with multiple “processors” (humans, robots, any manned or unmanned units or
devices, etc.) directly operating in it in a cooperative or competitive manner. An SGL program (called
scenario) can be viewed from different angles:

• As the first linguistic means towards describing and formalizing the notion of gestalt [7], often
allowing us to grasp top semantics, integrity and super-summative features of large complex
systems.

• As an active recursive self-matching pattern which if applied against distributed physical,
virtual, executive, or combined worlds, can cover, rule and change these worlds in the way
required.

• As a sort of a universal genetic mechanism expressed in a special integral formalism and
allowing any distributed systems, whether passive or active, to be created, grown, extended,
evolved, and modified.

• As a symbolic “soul” implanted into the distributed world and self-spread throughout it,
providing local and global awareness and control, also the world’s meaning, sense, life, and
consciousness.

URL: http://dx.doi.org/10.14738/aivp.41.1922 8

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

• As a powerful and globally controlled super-virus which when injected from any point into the
world’s body can cause different effects on it, from full control and direction of evolution to
complete destruction, if required.

3 The SGL Worlds
SGL directly operates with:

• Physical World (PW), continuous and infinite, where each point can be identified and accessed
by physical coordinates expressed in a proper coordinate system (terrestrial or celestial) and
with the precision given.

• Virtual World (VW), which is discrete and consists of nodes and semantic links between them,
both nodes and links capable of containing arbitrary information, of any nature and volume.
VW may be considered as finite as regards the volume of information the mankind
accumulated by today, but taking into account its continuing and rapid growth, also possible
existence of other civilizations in space, it may potentially be treated as infinite too.

• Executive world (EW), consisting of active doers with communication channels between them,
where doers may represent any devices or machinery capable of operating on the previous two
worlds and include humans, robots, mainframes, laptops, smartphones, etc.

• Different kinds of combination of these worlds can also be possible within the same formalism.
For example, Virtual-Physical World (VPW) may allow not only for a mere mixture of the both
worlds but also their deep integration, where individually named VW nodes can be associated
with certain PW coordinates, thus allowing for their presence in physical reality too. On the
other side, the whole regions of PW of arbitrary shape and size may have certain virtual names
identifying them, and this naming can be hierarchical. Another possibility is Virtual-Execution
World (VEW), where doer nodes may be associated with virtual nodes (say, in the form of
special names or nicknames) assigned to them, with semantic relations in between, similarly
to pure VW nodes. Execution-Physical World (EPW) can pin some or all doer nodes to certain
PW coordinates and consider them inseparable of each other, and Virtual-Execution-Physical
World (VEPW) can combine all features of the previous cases.

4 Top Sgl Syntax
SGL has a recursive structure with its top level shown in Figure 2. Such organization allows us to express
any spatial algorithm, create and manage any distributed structures and systems, static or dynamic,
passive or active, also solve any problem in, on, and over them, and this often can be expressed in a
compact, transparent and unified way.

Figure 2: SGL Recursive Syntax

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 9

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

Let us explain the language basics in a stepwise top-down manner. The SGL topmost definition with
scenario named as grasp (reflecting the spatial navigation-grasp-conquest model explained in previous
chapters, rather than the usual program) can be as follows:

grasp  constant | variable | rule [({ grasp,})]

where syntactic categories are shown in italics, vertical bar separates alternatives, square brackets
identify optional constructs, and parentheses and commas being the language symbols. Braces indicate
repetitive parts with the delimiter (here comma) at the right.

As follows from this notation, an SGL scenario, or grasp (applied from a certain world point, i.e. of PW,
VW, EW or their combination) in its simplest form can be just a constant presenting the result explicitly.
It can also be a variable containing data assigned to it previously, say, by another SGL scenario branch
which visited this point before (otherwise empty, or nil). The third variant is called a rule, which can
be optionally supplied with parameters (enclosed in parentheses and separated by comma if more than
one). These parameters, due to recursion, can generally be arbitrary grasps again (as constants or
variables in the simplest cases, as above, up to scenarios of any complexity and space-time coverage).

The rules, starting their influence in the current world positions, can be of different natures and levels
-- from local matter or information processing to full depth management and control. They can produce
results which may reside in the same or other world positions. The results obtained and world positions
reached by rules may become operands and/or starting positions for other rules, with new results and
new positions (single or multiple) obtained after their completion, and so on.

The SGL scenario can dynamically spread & process & match the world or its parts needed, with the
scenario code capable of virtually or physically splitting, replicating, and moving in the distributed
spaces (accompanied with transitional data). This movement can take place in single or multiple
scenario parts dynamically linked with each other under the overall control, the latter (both forward
and backward) spreading and covering the navigated world too.

SGL constants can represent information, physical matter (physical objects including), self-identifying
custom items (relating to information, matter or both), or special words used throughout the language
as standard parameters or modifiers for different constructs:

constant  information | matter | custom | special | grasp

The word “constant” is used rather symbolically in SGL definition, as the last option is recursively
defined as grasp again. This capable of representing any objects (passive or with embedded activities)
and with any structures within the recursive SGL syntax for their further processing by SGL rules.

SGL variables, called “spatial”, containing information and/or matter and serving different features of
distributed scenarios, can be stationary or mobile. They are classified as global (with residence and
mobility usually undefined), heritable (event-born and remaining stationary to it, being shared by all
subsequent events), frontal (accompanying evolution, mobile), nodal (temporarily associated with, and
stationary to, accessed world nodes), and environmental (external and internal world-accessing,
stationary or mobile):

variable  global | heritable | frontal | nodal | environmental

And rules belonging to the following classes:

rule  movement | creation | echoing | verification | assignment | advancement |

URL: http://dx.doi.org/10.14738/aivp.41.1922 10

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

branching | transference | timing | granting | type | usage | application | grasp

The final rule’s option, grasp, brings another level of recursion into SGL where operations may not only
be explicitly set up in advance but rather represent results of spatial development of SGL scenarios (of
any world coverage and complexity), also act in aggregates with other rules and modifiers or data on
the same operands.

5 SGL Main Features

5.1 How Scenarios Evolve
In order to explain main SGL features, we will show how its scenarios generally evolve in distributed
worlds, with the points following.

• SGL scenario is considered developing in steps, which can be parallel, with new steps produced
on the basis of previous steps.

• Any step, including the starting one, is always associated with a certain point or position of the
world (i.e. physical, virtual, executive, or combined) in which the scenario (or its particular part,
as there may be many parts working simultaneously) is currently developing.

• Each step provides a resultant value (which may be single, multiple, and/or structured)
representing information, matter or both, and a resulting control state (as one of possible
states, ranging by their strength), in the same or other world point (or points) reached.

• Different scenario parts may evolve from the same step in ordered, unordered, or parallel
manner, providing new independent or interdependent steps.

• Different scenario parts can also succeed each other, with new parts evolving from final steps
produced by the previous parts.

• This (potentially parallel and distributed) scenario evolution may proceed in synchronous or
asynchronous mode, also their any combinations.

• SGL operations and decisions in evolving scenario parts can use control states and values
returned from other scenario parts whatever complex and remote they might be, thus
combining forward and backward scenario evolution in distributed spaces.

• Different steps from the same or different scenario parts can be associated with the same
world points, sharing persistent or temporary information in them.

• Staying with world points, it is possible to change local parameters in them, whether physical
or virtual, thus impacting the worlds via these locations.

• Scenarios navigating distributed spaces can create arbitrary distributed physical or virtual
infrastructures in them, which may operate on their own after becoming active, with or without
external control. They can also subsequently (or even during their creation) be navigated,
updated, and processed by the same or other scenarios.

• Overall organization of the world creation, navigation, coverage, modification, analysis, and
processing can be provided by a variety of SGL rules which may be arbitrarily nested.

As will be shown throughout this book, any sequential or parallel, centralized or distributed, stationary
or mobile algorithm operating with both information and physical matter can be written in SGL at any
levels and their combinations. These can range from top semantic (like setting global goals, basic

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 11

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

operations, and key decisions only) to those detailing system partitioning, composition, subordination
between components and overall management and control.

6 Sense and Nature of Rules
In explaining the language basics further, let us shed some light on the general sense and nature of
rules, to be explained later in detail. A rule representing in SGL any action or decision may, for example,
belong to the following categories:

• Elementary arithmetic, string, or logic operation.

• Move or hop in a physical, virtual, execution or combined space.

• Hierarchical fusion and return of (potentially remote) data.

• Distributed control, both sequential and parallel, and in breadth or depth.

• A variety of special contexts detailing navigation in space and the character of embraced
operations and decisions.

• Type and sense of a value or its chosen usage, guiding automatic language
interpretation.

• Creation or removal of nodes and/or links in distributed knowledge networks, allowing
us to work with arbitrary structures, including their initial creation and any modification.

• A rule can also be a compound one integrating other rules whether elementary or
compound again, due to recursion.

All rules, regardless of their nature, sense or complexity, are pursuing the same ideology and
organization, as follows.

• They start from a certain world position, being initially linked to it.

• Perform or control the needed operations in a distributed space, which may be stepwise,
parallel, and arbitrarily complex.

• Produce concluding results by the final steps, expressed by control states and values there.

These final steps may associate with the same (where the rule started) or new world positions, reached
by the rule’s activity.

This uniformity allows us to effectively compose integral and transparent spatial algorithms of any
complexity and world coverage, operating altogether under unified and automatic (generally parallel
and distributed) control.

6.1 Spatial Variables
Let us consider some more details on the nature and sense of spatial variables, stationary or mobile,
which can be used in fully distributed physical, virtual or executive environments, effectively serving
multiple cooperative processes under the unified control. They are created upon declaration by special
rules, see later, or by first assignment to them.

• Global variables – the most expensive ones, which can serve any SGL scenarios and can be
shared by their different branches. Their locations, mobility capabilities, and life span can
depend on the features of distributed environments and SGL implementations.

URL: http://dx.doi.org/10.14738/aivp.41.1922 12

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

• Heritable variables – stationary, appearing within a scenario step and serving only all
subsequent steps, generally multiple and parallel (not from other branches), which can share
them in both read and write operations.

• Frontal variables – mobile, temporarily associated with the current step and not shared with
other parallel steps; they are following scenario evolution being transferred between
subsequent steps. These variables replicate if from a step a number of other steps directly
emerge. (The replication procedure, also physical mobility, may have implementation
peculiarities if working with physical matter rather than information.)

• Environmental variables – these allow us to access, analyze, and possibly change different
features of physical, virtual and execution words during their navigation. Most of them are
stationary, associated with the world positions reached, but some, especially related to the
language execution, can be mobile, some even global like the absolute time.

• Nodal variables – stationary, being a sole property of the world positions reached by the
scenarios. Staying at world nodes, they can be accessed and shared by all activities having
reached these nodes under the same scenario identity, and at any time.

These types of variables, especially when used together, allow us to create advanced algorithms
working directly in space, actually in between components of distributed systems rather than in them,
providing flexible, robust and self-recovering solutions (stealthy as well if needed). Such algorithms can
freely self-replicate, partition, spread and migrate in distributed environments (partially or as an
organized whole), while always preserving overall awareness and global goal orientation.

6.2 Control States and Their Hierarchical Merge
The following control states can appear after performing different scenario steps. Indicating local
progress, they can be used for distributed control of multiple processes, allowing us to make proper
decisions at a variety of levels.

• thru – reflects full success of the current branch of the scenario with capability of further
development (i.e. indicating successful operation not only in but also through this step of
control). The following scenario steps, if any, will be allowed to proceed from the current step.

• done – indicates success of the current scenario step as its planned termination, after which
no further development of this branch from the current step will be possible. This state can,
however, be subsequently changed to thru at higher levels by a special rule, as explained later.

• fail – indicates non-revocable failure of the current branch, with no possibility of further
development. This state directly relates to the current branch and step only. It, however, can
influence decisions at higher levels by rules concerning engagement of other branches (same
can be said about the previous two states).

• fatal – reports fatal, terminal failure with nonlocal effect, triggering abortion of all currently
evolving scenario processes and removal of all associated temporary data, regardless of their
current world locations and operational success. The scope of this spreading termination
process may be the whole scenario, by default, or it may be restricted by a certain rule
explained later (supervising the scenario part in which this state may potentially occur).

These control states appearing in different branches of a parallel and distributed scenario at bottom
levels can be used to obtain generalized control states for higher levels, up to the whole scenario, for
making proper decisions. The hierarchical bottom-up merge and generalization of states is based on

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 13

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

their comparative importance, or power, where the stronger state will always dominate when
ascending towards the decision root.

For example, merging states thru and done will result in thru, thus generally classifying successful
development at a higher scenario level with possibility of further expansion from at least some of its
branches. Merging thru and fail will result in thru too, indicating general success with possibility
of further development despite some branch (or branches) terminated with failure, while the others
remaining open to further evolution. Merging done and fail will result in done indicating generally
successful termination while ignoring local failures, however, without possibility of further
development in all these directions. And fatal will always dominate when merging with any other
states unless its destructive influence is contained within a certain higher level rule, as already
mentioned (the latter will itself terminate with fail in such a case). So ordering these four states by
their powers from maximum to minimum will be as follows: fatal, thru, done, fail.

These four states, their merge, and use in control rules are standard, language-embedded ones. SGL,
as a universal spatial language, also allows us to artificially set up any possible control states, with any
numbers and any merge or generalization procedures, which may include the mentioned standard ones
or be completely different.

7 Description of Main SGL Constructs

7.1 Constants
7.1.1 Information

String can be represented as any sequence of characters embraced by opening-closing single quotation
marks. This sequence should not contain the single quotes itself or they should appear in opening-
closing pairs only, with any nesting allowed.

Examples: ‘John’, ‘Peter and Paul’.

Instead of single quotes, a sequence of characters can also be placed into opening-closing curly brackets
(or braces {}), which can be used inside the string in pairs too. Braces will indicate the text as a potential
scenario code which can be immediately optimized (like removing unnecessary spaces and/or adjusting
to the standard SGL syntax, say, after using constructs typical to other programming languages for
convenience, as explained later). If single quotes are used to embrace texts as a potential SGL code,
such code optimization will have to be done during its interpretation, not before, and each time it is
involved, with the original text remaining intact.

Number can be represented in a standard way, similar to traditional programming languages, generally
in the form: [sign]{digit}[.{digit}[E[sign]{digit}]].

Examples: 105, 88.56, -15, 3.3E-5.

Numbers can also use words instead of digits and accompanying characters (using underscore as
separator if more then a single word needed), as follows:

zero, one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen,
fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, thirty, forty, fifty,
sixty, seventy, eighty, ninety, hundred, thousand, million, billion, trillion, dot,
minus, plus.

The four examples above may look like follows.

URL: http://dx.doi.org/10.14738/aivp.41.1922 14

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

a) with mixed representation:

hundred_five, eighty_eight.56, minus_fifteen, three.3E-five

b) up to the full and detailed wording:

one_zero_five, eight_eight_dot_fifty_six, minus_one_five,
three_dot_three_E_minus_five

7.1.2 Physical Matter

Physical matter (incl. physical objects) can be represented by a sequence of characters embraced by
opening-closing double quotation marks.

Examples: “truck”, “white sand”, “brick”, “water”.

The above mentioned self-identified constants (i.e. strings, scenarios, numbers, and matter) may also
be set up by explicit naming their types with the use of corresponding rules.

7.1.3 Custom Constants

For extended applications, other self-identified constants can be introduced too, if not conflict with the
language syntax, to be directly interpreted by an extended SGL interpreter. For example, these may be
coordinates in physical spaces similar to x17.5, y44.2, z-77, as well as their combination:
x17.5_y44.2_z-77, or internet addresses like http://www.amazon.com/. Special type-
defining rules can be used for more complex cases.

7.1.4 Special Constants

Special verbal constants can be used as standard parameters (or modifiers) in different language rules,
as will be shown later. The basic list of such words (consisting of lower case letters only) with comments
on their possible use is as follows:

• thru – indicates (or sets) control state as a success with possibility of further evolution.

• done– indicates (or sets) control state as a successful termination, with blocking further
development.

• fail– indicates (or sets) control state as failure, without further development.

• fatal– indicates (or sets) control state as absolute failure, with abortion of active distributed
processes.

• infinite – indicates infinitely large value.

• nil – indicates no value at all.

• any, all, other – stating that any, all, or other (i.e. except the current one) elements under
consideration can be used.

• passed – hinting that the world nodes to be considered have already been passed by the
current scenario branch.

• existing – hinting that world nodes with the given names are already existing and should
not be created again (i.e. duplicated).

• neighbors – stating that the nodes to be accessed are among direct neighbors of the current
node, i.e. within a single hop from it by existing links.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 15

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

• direct – stating that the mentioned nodes should be accessed or created (if not exist) from
the current node directly, regardless of possible (non)existence of direct links to them.

• noback – not allowing to return to the previously occupied node.

• firstcome – allowing to access the next-hop nodes only first time with the given scenario
ID.

• forward, backward – allowing to move from the current node via existing links along or
against their orientations (ignored when dealing with non-oriented links, which can be
traversed in both directions).

• global, local – may indicate the scope of operations or the world access in different rules.

• sync[hronous], async[hronous] – a modifier setting synchronous or asynchronous
mode of operations induced by different rules.

• virtual, physical, executive – indicating or setting the type of a node the scenario
is currently dealing with (the node can also be of a combined type).

• engaged, vacant – indicating or setting the state of a resource the current scenario is
dealing with (like, say, human or robot, or any physical, virtual or combined world node).

• existing – indicating that the node (or nodes) of interest are already existing.

• passed – indicating that the nodes under consideration have already been passed by the
current scenario branch.

7.1.5 Compound Constants, Grasps

Constants can also be arbitrarily complex, as aggregates (possibly hierarchical) from elementary types
(not necessarily the same) described above, being supported by the full SGL syntax (i.e. generally as
grasps again). They can be composed by using either standard rules described later or, if not sufficient,
any additional, custom ones oriented on specific application areas.

7.2 Variables
Different types of variables can be self-identifiable, i.e. by the way their names are written. Variables
of different types can also have any identifiers if explicitly declared by special rules, explained later.

7.2.1 Global, Heritable, Frontal, and Nodal Variables

The sense and use of these variables have been explained before, in Section 4.3. In the case of self-
identification, they should start with capital letters G, H, F or N, respectively, followed by a sequence
of alphanumeric characters (letters and digits only).

Examples: Globe, H214b, Frontal5, Nina37.

7.2.2 Environmental Variables

All these variables have specific names written in all capital letters, with brief explanation of their sense
and usage following.

TYPE – indicates the type of a node the current step associates with. This variable returns the node’s
type (i.e. virtual, physical, executive, or their combination as a list with more than one
value). It can also change the existing type by assigning to it another value (simple or combined too) if
needed.

URL: http://dx.doi.org/10.14738/aivp.41.1922 16

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

CONTENT – returns content of the current node (only if having virtual or executive dimension, or
both), which can be any string of characters (in the simplest case the latter just serving as its name).
Assigning to CONTENT allows us to change the existing node’s content when staying in it. In a purely
physical node CONTENT returns nil (as physical nodes can be identified by their addresses only). If a
node is of both virtual and executive nature, this variable deals with the virtual one.

ADDRESS – returns address of the current virtual node. This is read-only variable as node addresses
are set up automatically by the underlying distributed interpretation system during the creation of
virtual nodes, or by a system it has been put on top of (for example, it can be an internet address of
the node).

QUALITIES – identifies a list of available physical parameters associated with the current physical
position, or node, depending on the chosen implementation and application (for example, these may
be temperature, humidity, air pressure, visibility, radiation, noise or pollution level, density, salinity,
etc.). These parameters (generally as a list of values) can be obtained by reading the variable. They may
also be changed (depending on their nature and implementation system capabilities) by assigning new
values to QUALITIES, thus locally influencing the world from its particular point (or at least
attempting to).

WHERE – keeps physical coordinates of the current physical node in the chosen coordinate system (the
node can be combined one, additionally having virtual and/or executive features). These coordinates
can be obtained by reading the variable. Assigning a new value to this variable causes physical
movement of the current node into the new position (while preserving its identity, all information
surrounding, and control and data links with other nodes).

BACK – keeps internal system link to the preceding world node (virtual, executive or combined one
with virtual or executive dimension), allowing the scenario to most efficiently return to the previously
occupied node, if needed. Referring to internal interpretation mechanisms only, the content of BACK
cannot be lifted, recorded, or changed from the scenario level.

PREVIOUS – refers to an absolute and unique address of the previous virtual node (or combined with
execution and/or physical dimensions), allowing us to return to the node directly. This may be more
expensive than using BACK, but the content of PREVIOUS, unlike BACK, can be lifted, recorded, and
used elsewhere in the scenario.

PREDECESSOR – refers to the content/name of the preceding world node (the one with virtual or
executive dimension). Its content can be lifted, recorded, and used subsequently, including for
organization of direct hops to this node. Such hops, however, can also lead to other nodes with the
same content/name, as node contents/names are generally not unique throughout the world operated
in SGT. Assigning to PREDECESSOR can change content/name of the previous node.

DOER – keeps a name of the device (say, laptop, robot, smart sensor, or even a human) which interprets
the current SGL code. This device can be chosen for the scenario automatically, say, from the list of
offered ones, or just picked up from those known or guessed to be available. It can also be appointed
explicitly by assigning its name to DOER, causing the current SGL code move into this device and
execute there unless it terminates or another device is assigned to DOER, say, when the current one
becomes inefficient or fails.

RESOURCES – keeps a list of available or recommended resources (human, robotic, electronic,
mechanical, etc., by their types or names) which can be used for execution of the current and
subsequent parts of the SGL scenario. This list can contain potential doers too, which after being

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 17

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

selected by different scenario branches appear (by their names) in variables DOER associated with the
branches. RESOURCES can be accessed and changed by assignment, and in case of distributed SGL
interpretation it can be replicated with its content, the latter, possibly, partitioned between different
branches by the internal interpretation planning and optimization procedures.

LINK – keeps a name (same as content) of the virtual link which has just been passed. By assigning
new value to it you can change the link’s content/name. Assigning nil or empty to LINK removes the
link passed.

DIRECTION – keeps direction (along, against, or neutral) of the passed virtual link. Assigning to this
variable values like plus, minus, or nil (same as +, -, or empty) can change its orientation or make
non-oriented.

WHEN – assigning value to this variable sets up an absolute starting time for the following scenario
branch, thus allowing us to suspend and schedule certain operations and their groups in time.

TIME – returns current absolute time, being read-only global variable.

SPEED – reflects speed of physical movement of the node (physical, executive or combined, the latter
may include virtual dimension too) in which control (represented by the current step) is staying. By
assigning to this variable, you can change the speed of the current node. In case of a pure virtual node,
the notion of speed is irrelevant and will return nil when accessed, also causing no effect when
assigned to.

STATE – can be used for explicit setting of control state of the current step by assigning to it one of
the following: thru, done, fail, or fatal. (These states, as mentioned before, are also generated
implicitly, automatically on the results of success or failure of different operations, belonging to the
overall internal control of scenarios.) Reading STATE will always return thru as this could only be
possible if the previous operation terminated with thru too, thus letting this operation to proceed. A
certain state explicitly set up in this variable can be used subsequently at higher levels (possibly,
together with termination states of other branches) within distributed control provided by SGL rules,
whereas assigning fatal to STATE causes already mentioned abortion of distributed processes with
associated data.

VALUE – when accessed, returns the resultant value of the latest operation (say, an assignment to a
variable or just naming a variable or constant). Assignment to VALUE leaves its content available to
the next operation. This variable allows us to organize balanced processing combining sequences of
operations with their representation as nested expressions in SGL. (As follows from syntax of Fig. 1, the
resultant values of operations can also be accessed implicitly if these operations or their sequences are
themselves standing as operands of higher level rules.)

COLOR – keeps identity of the current SGL scenario or its branch, which propagates together with the
scenario and influences grouping of different nodal variables under this identity at world nodes. This
means that different scenarios or their branches with different identities are protected from
influencing each other via the use of identically named nodal variables. However, scenarios with
different colors can penetrate into each other information areas if they know the other’s colors, by
temporarily assigning the needed new identity to COLOR (to perform cooperative or stealth
operations) while restoring the previous color afterwards. Any numerical or string value can be
explicitly assigned to COLOR. By default, different scenarios are implicitly assigning the same value in

URL: http://dx.doi.org/10.14738/aivp.41.1922 18

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

COLOR at the start, thus being capable of sharing all information at navigated nodes, unless change
their personal color themselves.

IN – special variable reading from which asks for data from the outside world in the current point of
it; this input data becoming its resultant value.

OUT – special variable allowing us to send information from the scenario to the outside world in its
current point, by assigning the output value to this variable.

STATUS – retrieving or setting the status of a doer node in which the scenario is currently staying
(engaged or vacant, possibly, with a numerical estimate of the level of engagement or vacancy).
This feedback from the implementation layer could be useful for a higher-level supervision, planning,
and guidance of the use and distribution of resources executing the scenario, rather than doing this
fully automatically by standard procedures which may not always be optimal, especially under resource
shortages.

Other environmental variables for extended applications can be introduced and identified by unique
words in all capitals too, or they may use any names if explicitly set up by a special rule, as mentioned
later.

As can be seen, most environmental variables are serving as stationary ones, except RESOURCES and
COLOR, which are mobile. The global variable TIME may symbolically be considered as stationary too
but in reality may depend on implementation details.

7.3 Rules
The concept of rule is not only dominant in SGL for setting most diverse activities ranging from
elementary data & knowledge & physical matter processing to overall management and control, but
also the only one. This provides a universal, integral and unified approach to expressing any operations
in distributed dynamic worlds, and if needed, in parallel and fully distributed mode. This section
describes the main repertoire of introduced and researched SGL rules with summary of their sense and
possible applications.

7.3.1 Movement

Rules of this class result in virtual hopping to the existing nodes (the ones having virtual or executive
dimensions) or real movement to new physical locations, associating the remaining scenario (with
current frontal variables and control) with the nodes reached. The resultant values of the movements
are represented by the reached node names (in case of virtual, executive or combined nodes) or nil
in case of pure physical nodes, with control state thru in them if the movement was successful. If no
destinations reached, the movement results with state fail and value nil.

hop – sets virtual propagation to node(s) in virtual, execution, or combined worlds (the latter may have
physical dimension too), directly or via links connecting them. In case of a direct hop, except node name
or address, special modifier direct should be included into parameters of the rule. If a hop to take
place from a node to a node via an existing link, both destination node name/address and link name
(with orientation if needed) should be among parameters of the rule. This hop rule can also cause
independent and parallel propagation to a number of nodes if there are more than one node connected
to the current one by the named link, and only link name mentioned (or given by indicator all, for all
links involved). In a more general case, parallel hops can be organized from the current node if the
destination attributes are given by a list of names/addresses of nodes and names of links (or direct
or all indicators) which should lead to them.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 19

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

move – sets real movement in physical world to a particular location given by coordinates in a chosen
coordinate system. The destination location becomes a new temporary node with no name (or nil)
which disappears when all current scenario activities leave it for other nodes. If, however, the
destination node is to have virtual dimension too (indicated by virtual in the parameters of the rule,
possibly, accompanied by a certain name otherwise default name used), it will remain intact and can
be accessed by other scenarios or different branches of the current one unless removed explicitly.

shift – differs from the move only in that movement in physical world is set by deviations of physical
coordinates from the current position rather than by absolute physical coordinates.

follow – allows us to propagate in both virtual and physical spaces by following arbitrary routes set
up by sequences of links, nodes, physical coordinates, etc., or via obtained internal interpretation tracks
using recorded entries to them (as explained later).

7.3.2 Creation

This class of rules creates or removes nodes and/or links leading to them during distributed world
navigation. After the creation, the resultant values will be their names (there may be more than one
destination node created) with termination state thru, and the next steps will be associated with the
nodes reached, starting in them. If the operation fails, its resultant value will be nil and control state
fail in the node it started. After the node(s) successful removal operation, the resultant value in the
starting node will be the same as before and control state thru.

create – starting in the current world position, creates either new virtual link-node pairs or new
isolated nodes. For the first case, the rule is supplied with names and orientations of new links and
names of new nodes these links should lead to, which may be multiple. For the second case, the rule
has to use modifier direct indicating direct nodes creation, i.e. without links to them. If to use
modifiers existing or passed for the link-node creation hinting that such nodes already exist (also
if nodes are given by addresses, thus indicating their existence) only links will be created to them by
create.

linkup – just simplifies the latest rule, creating only links with proper names from the current node
to the already existing nodes, without the need to use modifiers existing or passed. However,
still using modifier passed may help us narrow direct search of the already existing nodes.

delete – removes links together with nodes they should lead to, starting from the current node. Links
and nodes to be removed should be either explicitly named or represented by modifiers any or all.
Using modifier direct instead of link name together with node name will allow us to remove such
node (or nodes) from the current node directly. In all cases, when a node is deleted, all its links with
other nodes will be removed too.

unlink – removes only links leading to neighboring nodes where, similar to the previous case, they
should be explicitly named or modifiers any or all used instead. The resultant values on the rule will
be represented by these node names, with states thru in them, similar to hop and linkup
operations. The next scenario step will start in these neighboring nodes.

The above creation rules, depending on the implementation, can also be used in a broader sense and
scale, as contexts embracing arbitrary scenarios and influencing hop operations within their scope (the
same scenarios will be capable of operating in creation or deletion mode with them).

URL: http://dx.doi.org/10.14738/aivp.41.1922 20

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

7.3.3 Echoing

The rules of this class use terminal control states and terminal values from the embraced scenario
(which may be remote) to obtain the resultant state and value in the world point it started, also being
it’s terminal point (from which the rest of the scenario, if any, will develop). The usual resultant control
state for these rules is thru (fail occurs only when certain terminal values happen to be unavailable
or result unachievable, say, as division by zero). Depending on the rule’s semantics, the resultant value
can be compound, like a list of values, which may be nested.

state – returns the resultant generalized state of the embraced SGL scenario upon its completion,
whatever its complexity and space coverage. This state being the result of the ascending fringe-to-root
generalization of terminal states of the scenario embraced, where states with higher power (from max
to min as: fatal, thru, done, fail) dominate in this potentially distributed and parallel process,
as already mentioned. The resultant state returned is treated as the resultant value on the rule, the
latter always terminating with own control state thru, even in the case of resultant fatal, thus
restricting its spreading by echo rules. (Another restriction of influence of fatal by a special rule will
be explained later.)

order – returns an ordered list of final values of the scenario embraced corresponding to the order
of launching related branches rather than the order of their completion. For parallel branches these
orders may, for example, relate to how they were activated, possibly, with the use of time stamping
upon invocation.

rake – returns a list of final values of the scenario embraced in an arbitrary order. This order may, for
example, depend on the order of completion of branches; it can also be influenced by peculiarities of
the echoing collection procedure of the results.

sum – returns the sum of all final values of the scenario embraced.

count – returns the number of all resultant values associated with the scenario embraced, rather than
values themselves as by the previous rules.

first, last, min, max, random, average – return, correspondingly, the first, the last, minimum,
maximum, random, or average value from all terminal values returned by the scenario embraced,
where first and last will depend on ordering of the results with details similar to the rule order
above.

element – returns the value of an element of the list on its left operand by index or content (see
corresponding usage rules later) given by the right operand. If the right operand is a list of
indices/contents, the result will be the list of corresponding values from the left operand. If element
is used within the left operand of assignment (explained later), instead of returning values it will be
providing an access to them.

sortup, sortdown return an ordered list of values produced by the operand embraced, starting
from maximum or minimum value and terminating, correspondingly, with minimum or maximum one.

reverse – changes to the opposite the order of values from the embraced operand.

add, subtract, multiply, divide, degree – perform the corresponding operations on two or
more operands of the scenario embraced. If the operands represent multiple values as lists, these
operations are performed between the peer elements, with the resulting value being multiple too.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 21

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

separate – separates the left operand string value by the string at the right operand used as a
delimiter in a repeated manner for the left string, with the result being the list of separated values. If
the right operand is a list of delimiters, its elements will used sequentially and cyclically unless the string
at the left is fully partitioned. If the left operand represents a list of strings, each one is separated by
the right operand as above, with the resulting lists of separated values merged into a common list in
the order they were received.

unite – integrates the list of values at the left (as strings, or to be converted into strings automatically
if not) by a repeated delimiter as a string (or a cyclic list of them) at the right into a united string.

attach – makes the resultant string by connecting the right string operand to the end of the left one.
If operands are lists with more than one element, the attachment is made between their peer elements,
receiving the resultant list of united strings. This rule can also operate with more than two operands.

append – forms the resultant list from left and right operands, appending the latter to the end of the
former, where both operands may be lists themselves. More than two operands can be used too.

common – returns intersection of two or more lists as operands, with the result including same
elements of all lists, if any, otherwise nil.

withdraw – its result will be the first element of the list provided by the embraced operand, with this
element also simultaneously withdrawn from the list (the latter makes sense only for a variable
containing a list of values as the operand). This rule can work with more than one element by adding
another operand providing the number of elements to be withdrawn and represented as the result.

access – returns an internal access (which can be recorded, say, in a variable) to all terminal positions
of the embraced scenario, which can be used to reenter them most efficiently afterwards (on internal
system level). This reentry may be performed by the rule follow described before.

7.3.4 Verification

These rules provide control state thru or fail reflecting the result of certain verification procedures,
also nil as own resultant value, while remaining in the same world positions after completion.

equal, notequal, less, less[or]equal, more, more[or]equal, bigger, smaller,
heavier, lighter, longer, shorter – make comparison between left and right operands, which
can represent information or physical matter, or both. In case of vector operands, state thru appears
only if all peer values satisfy the condition set up by the rule (except notequal, for which even a
single non-correspondence between peers will result in thru). The list of such rules can be easily
extended for more specific applications, if supported properly on implementation level.

empty, nonempty – checks for emptiness (i.e. non-existence, same as nil) or non-emptiness
(existence) of the resultant value obtained from the embraced scenario.

belongs, notbelongs – verifies whether the left operand value (single or a list) belongs as a whole
to the right operand, potentially a list too.

intersects, notintersects – verifies whether there are common elements (values) between
left and right operands, being generally lists. More than two operands can be used for this rule too,
with at least a same single element to be present in all of them to result in thru.

URL: http://dx.doi.org/10.14738/aivp.41.1922 22

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

7.3.5 Assignment

This class of rules assigns the result of the right scenario operand (which may be arbitrarily remote, also
as a list of values) to the variable or set of variables directly named or reached by the left scenario
operand, which may be remote too. The left operand can also provide pointers to certain elements of
the reached variables which should be changed by the assignment rather than the whole variables (see
rule element above). These rules will leave control in the same world position they’ve started, its
resultant state thru if assignment was successful otherwise fail, and the same value as assigned to
the left operand. There are two options of the assignment.

assign – assigns the same value of the right operand (which may be a list) to all variables accessed
(or their elements pointed) by the left operand. If the right operand is represented by nil or empty,
the left operand variables as a whole (or only their elements pointed) will be removed.

assignpeers – assigns values of different elements of the list on the right operand to different
variables (or their pointed elements) associated with the destinations reached on the left operand, in
a peer-to-peer mode.

7.3.6 Advancement

Rules of this class organize forward or “in depth” advancement in space and time. They can work in
synchronous or asynchronous mode using modifiers sync[hronous] or async[hronous] (the
second one optional as asynchronous is default mode).

advance – organizes stepwise advancement in physical, virtual, executive or combined spaces, also
in a pure computational space while staying in the same world nodes (thus moving in time only). For
this, the embraced SGL scenarios are used in a sequence, as written, where each new scenario applies
from all terminal world nodes reached by the previous scenario (these nodes may happen to be the
same as before if only computations took place). The resultant world positions and resultant values on
the rule are associated with the final steps of the final scenarios on the rule. And the rule’s resultant
state is a generalization of control states associated with its final steps. The frontal variables, if any, are
being inherited at new steps from the preceding steps (with their copies removed from the previous
positions), thus moving from one step to another, and between scenario operands, being also
replicated if multiple steps emerge from a previous step.

If no final step occurs with states thru or done, the whole advancement on this rule is considered as
failed (with generalized state fail), resulting in no possibility to continue the scenario evolution in
this direction. On default or with modifier asynchronous, the sequence of scenarios develops in
space and time independently in different directions, and different operand scenarios in the sequence
may happen to be active at the same time. With the use of synchronous modifier, all invocations of
every new scenario in their sequence can start only after full completion of all invocations of the
previous scenario.

slide – works similar to the previous rule unless the next scenario fails to produce resultant state
thru or done from some world node; in this case the next scenario from their sequence will be applied
from the same starting position, and so on. The resultant world nodes and values in them will be from
the last successfully applied scenario (not necessarily the same in their sequence when independently
developing in different directions). The results on the whole rule, in their extreme, may even happen
to correspond to the existing results in the node the rule started (including node’s position) before the
rule’s application, with state thru always being the resultant state in any cases. Both synchronous and
asynchronous modes of parallel interpretation of this rule, similar to the previous rule advance, can

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 23

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

be possible, where in the synchronous case different scenarios can start only after full completion of
the previous ones.

repeat – invokes the embraced scenario as many times as possible, with each new iteration taking
place from all final positions with state thru reached by the previous invocation. If no final steps of
the scenario invocation completed with state thru, the starting position from which this iteration
failed together with its value will be included into the set of final positions and values on the whole rule
(and this set may have positions from different iterations).

Similar to the previous rule slide, in the extreme case the final set of positions on the whole rule may
happen to contain only the position from which the rule started, with state thru and value it had at
the beginning. By supplying additional numeric modifier to this rule, it is possible to explicitly limit the
number of allowed repetitions of the embraced scenario (of course, the operand scenario may be
organized to properly control the needed number of iterations itself, but with additional modifier this
may be more convention is come cases).

Both synchronous and asynchronous modes of parallel interpretation of this rule, similar to the
previous rules advance and slide are possible. In the synchronous mode, at any moment of time
only the same scenario iteration can develop in a potentially distributed space-time continuum,
whereas in the asynchronous case these may happen to be different iterations working in parallel.

7.3.7 Branching

These rules allow the embraced set of scenario operands to develop “in breadth”, each from the same
starting position, with the resultant set of positions and order of their appearance depending on the
logic of a concrete branching rule. Branching may be static and explicit if we have a clear set of
individual operand scenarios separated by comma. It can also be implicit and dynamic, as explained
later. For all branching rules that follow, the frontal variables associated with the starting position will
be replicated together with contents, with the copies obtained developing independently within
different branches. The original variable will be removed from the starting position then. Details of this
replication if variable holds physical matter rather than information can depend on the application and
implementation details.

branch – most general variant with logical independence of scenario operands from each other, and
any possible order of their invocation and development from the starting position (from strictly
sequential to fully parallel, and from chaotic to absolutely ordered). The resultant set of positions and
associated values will unite all terminal positions & values on all scenario operands involved, and the
resultant control state on the whole rule is the generalization of generalized states on all scenario
branches.

sequential – organizing strictly sequential invocation of all scenario operands, regardless of their
resultant generalized control states, and launching the next scenario only after full completion of the
previous one. The resultant set of positions, values, and rule’s control state will be same as for branch.

parallel – organizing fully parallel development of all scenario operands from the same starting
position (at least as much as this can be achieved within existing environment, resources, and
implementation). The resultant set of positions, values, and rule’s control state will be same as for the
previous two rules.

if – usually has three scenario operands. If the first one results with generalized termination state
thru or done, the second scenario is activated, otherwise the third one will be launched. The resultant

URL: http://dx.doi.org/10.14738/aivp.41.1922 24

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

set of positions & associated values will be exactly the same as achieved by the second or third
scenarios after their completion. If the third scenario is absent and the first one results with fail, the
resultant position will be the one the rule started from, with state thru and value it had at the start.
If only a single operand (i.e. the first one) is under the rule, it will also result with its starting position,
initial value in it, and state thru, regardless of the generalized termination state of this single operand,
its positions reached and values in them (all these will be ignored for the further scenario development,
if any).

or – allows only one operand scenario in their sequence (not specifying which, may be any) with the
resulting state thru or done to be registered as successful and resultant, with the resulting positions
& associated values on it to be the resulting ones on the whole rule. The activities of all other scenario
operands and all results produced by them will be cancelled. If no branch results with thru or done,
the rule will terminate with fail and nil value. Used in combination with the previous rules
sequential and parallel, it may have the following more clarified and detailed options.

orsequential – launches the scenario operands in a strictly sequential manner, one after the other
as they are written, waiting for their full completion before launching the next one, unless the first one
replying with generalized state thru or done, providing the result on the rule as a whole. Invocation
of the remaining scenarios in the sequence will be aborthed, and all results of the previous scenarios
will be removed.

orparallel – activates all scenario operands in parallel from the same current position, with the
first one in time replying with generalized thru or done being registered as the resultant branch for
the rule. All other branches will be forcefully terminated without waiting for their completion (or just
ignored, depending on implementation, which in general may not be the same as the termination for
global results)

The resultant scenario in all three cases above provides its final set of positions with values and states
in them as the result on the whole rule. If no scenario operand returns states thru or done, the whole
rule will result with state fail in its starting position and nil as resultant value.

and – activates each scenario operand from the same position, demanding all of them to return
generalized states thru or done. If at least a single operand returns generalized fail, the whole rule
results with state fail and nil value in the starting position while forcefully terminating the
development of all other branches, which may still be in progress. If all operand scenarios succeed, the
resulting set of positions unites all resultant positions on all operands with their associated values.
Combining the rule with rules sequential and parallel (as we did for or) clarifies their activation
and termination order, as follows. (These two options can, in principle, produce differing general results
if different scenario operands work in intersecting domains and share intermediate results.)

andsequential – activates each scenario operand from the same position in the written order,
terminating the rule when first one resulting with fail, while ignoring other operands and removing all
results produced by this and all previous operands.

andparallel – activates each scenario operand from the same position, terminating the rule when
the first one in time results with fail, while aborting all other operands activity and removing all
results produced by the current one.

choose – chooses a scenario branch in their sequence before its execution, using certain parameters
among which, for example, may be its numerical order in the sequence (or a list of such orders to select
more than one branch). This rule can also be aggregated with other rules like first, last, random,

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 25

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

or any clarifying the branch to be chosen (used here as modifiers among parameters rather than rules).
The resultant set of positions, their values and states will be taken from the branch(es) chosen.

firstrespond – selects the first branch in time replying its complete termination, regardless of its
generalized termination state, which may happen to be fail too, even though the other branches (to
be forcefully terminated afterwards) could respond later with thru or done. The set of positions on
this selected branch and their associated values (if any) will be taken as those for the whole rule. This
rule assumes that different branches are launched independently and in parallel. But it differs
fundamentally from the rule orparallel as the latter selects the first in time branch replying with
success (i.e. thru or done) for which, in the worst case, all branches may need to be executed in full
to find the branch needed. A modification of this rule my have an additional parameter establishing,
for example time limit within which replies are expected or allowed from branches (where there may
be more than one branch as the result), otherwise failure if no branch responded in time.

cycle – repeatedly invokes the embraced scenario from the same starting position until its resultant
generalized state remains thru or done, where on different invocations same or different sets of
resultant positions with different values may emerge. The resultant set of positions on the rule will be
an integration of all positions on all successful scenario invocations with their values. If no invocation
of the embraced scenario succeeds, the resultant state fail in the starting position and nil value
will emerge.

loop – differs from the previous rule in that the resultant set of positions on it being only the set
produced by the last successful invocation of the embraced scenario (it will terminate, as before, with
fail and nil in the starting position if no invocation succeeds).

sling – invokes repeatedly the embraced scenario until it provides state thru or done, resulting in
the same starting position with state thru and its associated value when the last iteration results with
fail.

whirl – endlessly repeating the embraced scenario from the starting position regardless of its success
or failure with no resultant positions or values produced. External forceful termination of this construct
may be needed, like using first in time termination of a competitive branch (say, under higher-level rule
orparallel).

It could also be possible to set a limit on the number of repetitions (or duration time) in these cycling-
looping-slinging-whirling rules – by supplying them with an additional parameter restricting the
repeated scenario invocations.

split – performs, if needed, additional static or dynamic partitioning of the embraced scenario to
different branches, especially in complex and not clear at first sight cases, all starting from the same
current position. It may be used alone or in combination with the above mentioned branching rules,
preparing separate branches for the latter. Some examples follow.

• If split embraces explicit branches separated by commas, it does nothing as the branches
are already declared.

• It the embraced single operand represents broadcasting move or hop (creative or
destructive including) in multiple directions, the branches are formed from all possible
variants of elementary moves or hops, before their execution.

URL: http://dx.doi.org/10.14738/aivp.41.1922 26

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

• If the rule’s operand is an arbitrary scenario (not belonging to the two cases above), the
branches are formed after their completion, where each position reached (with associated
values) starts a new branch.

• If an arbitrary scenario terminates with a single or multiple positions which have multiple
values associated with them (i.e. lists), each constituent value in these lists starts an
individual branch, becoming its sole value.

fringe – being the most general variant of splitting for any scenario after its execution, is considering
all final positions reached by the scenario as individual branches. It may also have additional
parameters helping us to select or reject the received branches as candidates for a further scenario
evolution (possibly, with involvement of both forward and echo operations over the control hierarchy
produced by the scenario, for making proper decisions).

7.3.8 Transference

This class of rules organizes different control or data transference activity.

run – transfers control to the SGL code (treated as a procedure) resulting from invocation of the
embraced scenario (which can be of arbitrary complexity and space coverage). The procedure (or
procedures, if a list of them) obtained in such a way and activated will produce the resultant set of
positions with associated values and control states as the result on the rule, similar to other rules.

call – transfers control to a code produced by the embraced scenario which may represent activation
of external systems (including those working in other formalisms), with resultant position being the
same where the rule started, value in it corresponding to what has been returned from the external
call, and state thru if the call was successful, otherwise fail.

input – provides input of external information or physical matter (objects) on the initiative of SGL
scenario, resulting in the same position but with value received from the outside. The rule may have
an additional argument clarifying a particular external source from which the input should take place.
The rule extends possibilities provided by reading from environmental variable IN explained before.

output – outputs the resultant value obtained by the embraced scenario, which can be multiple, with
the same resultant position as before but associated value just sent outside (for virtual data only). The
rule may have an additional pointer to a particular external sink. The rule extends possibilities provided
by assignment to the previously explained environmental variable OUT.

transmit – represents a variant of output for specific applications, say, involving long distance
radio communications and broadcasting features, with potentially multiple addresses. It may have
additional parameters clarifying the action needed.

send – staying in the current position associated with physical, virtual, executive (or combined) node,
transfers information or matter obtained by the scenario on the first operand to other similar node
given by name, address or coordinates provided by the second operand, assuming that a companion
rule receive is engaged there. The rule may have an additional parameter setting acceptable time
delay for a consumption of this data at the receiving end. If the transaction is successful, the resultant
position will be the same where the rule started with state thru and value sent (virtual only) otherwise
nil and state fail.

receive – a companion to rule send, naming the source of data to be received from (defined
similarly to the destination node in send). Additional timing (as a second operand) may be set up too,
after expiration of which the rule will be considered as failed. In case of successful receipt of data, the

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 27

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

rule will result in the same position with the value obtained from send and state thru, otherwise
with nil and state fail.

7.3.9 Timing

sleep – establishes time delay defined by the embraced scenario operand, with no activities in the
meantime by this particular scenario branch. The starting position and its existing value will be the
result on the rule after the time passed, with state thru. Such time delay of the related branch can
also be achieved by assigning the current absolute time (received from environmental variable TIME),
incremented by the delay value returned from the scenario embraced by sleep, to environmental
variable WHEN described before.

allowed – sets time limit by the first operand for activity of the scenario on second operand. If the
scenario terminates before time limit expires, its resultant positions with values and states will define
the result on this rule. Otherwise the scenario will be forcefully aborted with state fail in the starting
position as the rule’s result.

7.3.10 Granting

contain – restricts the spread of destructive consequences caused by control state fatal within
the ruled scenario. This state may appear automatically or can be assigned explicitly to environmental
variable STATE, triggering emergent completion of all scenario processes and removal of data
associated with the scenario. The resultant position will the one the rule started, its value nil, and
state fail. Without occurrence of fatal, the resultant positions, their values and states on the rule
will be exactly the same as of the scenario embraced.

release – allows the embraced scenario develop free from the main scenario, abandoning bilateral
control links with it, starting from the current position (the main scenario after the rule’s activation
“will not see” this construct any more). The released, now independent, scenario will develop using
standard subordination and command and control mechanisms, as usual. For the main scenario, this
rule will result in its starting position with state thru and original value there.

free – differs from the previous case in that despite its independence and control freedom from the
main scenario, as before, it is nevertheless obliged to return data obtained in its terminal positions if
such a request has been issued by rules at higher levels.

blind – blocks the embraced scenario from engagement in further development after its completion,
but retains the possibility to reply to higher levels with values associated with final positions reached.
This being equivalent to setting control state done in each terminal position.

lift – removes the blocking of further development caused by states done in terminal positions of
the embraced scenarios (including the effect caused by rule blind), substituting them with thru,
thus allowing further development from these positions by a subsequent scenario.

none – sets nil (or empty) as a returned value of the whole scenario embraced, with the rule resulting
in the same starting position with sate thru.

stay – whatever the scenario embraced and its evolution in space, the resultant position will always
be the same this rule started from, with the latest value in it and state thru. As can be seen, this rule
differs from the previous one only by its resultant value.

seize – establishes, seizes, an absolute control over the resources associated with the current virtual,
physical, executive or combined node, blocking these from any other accesses and allowing only the

URL: http://dx.doi.org/10.14738/aivp.41.1922 28

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

embraced scenario to work with them, thus preventing possible competition for the node’s assets
which may lead to unexpected results. This resource blockage is automatically lifted after the embraced
scenario terminates. The resultant set of positions on the rule with their values and states will be the
ones from the scenario embraced (the latter may potentially be of any complexity and space-time
coverage). If the node has already been blocked by another scenario exercising its own rule seize,
the current scenario will be waiting for the release of the node. If more than two scenarios are
competing for the node’s resources, they will be organized in a FIFO manner at the node.

7.3.11 Type

These rules explicitly assign types to different constructs generally represented as strings (given
explicitly or being the result of an arbitrary operand scenario with single or multiple elements). These
rules result in the same positions the rule started, nil value and state thru (fail appears only if a
string element does not satisfy certain constrains mentioned below).

global, heritable, frontal, nodal, environmental – allow different types of variables to
have any identifiers (letter and/or digits only) rather than those restricted for self-identification, as
explained before. These new names will continue represent the variables with their types in the
subsequent scenario development to its full depth unless redefined by these rules. As regards
environmental variables, their names differing from the standard ones and new kinds of such variables
may need special adjustment with the implementation layer which is directly accessing corresponding
physical or virtual resources.

matter, number, string, scenario – allow arbitrary strings (with letters, digits and some other
characters but not violating the SGL syntax) obtained by the scenario embraced to represent
corresponding values rather than using self-identifiable representations mentioned before (with
automatic internal types conversion, if needed).

7.3.12 Usage

address, coordinate, content, index, time, speed, name, place, center, range,
doer, human, robot, node[s], link[s] – explicitly clarify the purpose or usage of different values
in other rules, adding flexibility to composition of SGL scenarios for which strict order of operands and
presence all of them may be optional. The rules result in the same positions they’ve started with the
values clarified by them.

unit – identifies the set of values produced by the embraced scenario as an integral unit (like list) for
further processing. This may also be useful for hierarchical structuring of data, where elements within
declared units may be other units themselves, and so on. The rule results in the same position it started
with the value being the unit formed.

7.3.13 Application

Additional application, or custom, rules can allow SGL to be extended unlimitedly while effectively
embracing and embedding specifics of different application areas. They can be used similarly to other
language rules while obeying established internal interpretation principles and unified command and
control. These rules will, however, need extension of and adjustment to the standard language
interpretation system.

7.3.14 Aggregated, Grasp

This brings another level of recursion into the language structure where rules can themselves be
defined by arbitrary scenarios, or grasps (and not only by the explicit names described above), possibly,

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 29

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

aggregated with each other and their modifiers, to operate jointly on the scenarios embraced. Such
aggregation can increase and sharpen the power and flexibility of the language and reduce redundancy
in complex operations over distributed environments.

8 Full SGL Summary
The following is full SGL formal description summarizing the listed above language constructs, where,
as already mentioned, syntactic categories are shown in italics, vertical bar separates alternatives, parts
in braces indicate zero or more repetitions with a delimiter at the right if more than one, and constructs
in brackets are optional. The remaining characters and words are the language symbols (including
boldfaced braces).

grasp  constant | variable | rule [({ grasp,})]
constant  information | matter | custom | special | grasp
variable  global | heritable | frontal | nodal | environmental
rule  movement | creation | echoing | verification | assignment |
 branching | transference | timing | granting | type | usage |
 application | grasp
information  string | scenario | number
string  ‘{character}’
scenario  {{character}}
number  [sign]{digit}[.{digit}[e[sign]{digit}]]
matter  “{character}”
special  thru | done | fail | fatal | infinite | nil | any | all |
 other | passed | existing | neighbors | direct | noback |
 firstcome | forward |backward | global | local |
 sync[hronous] | async[hronous] |virtual | physical |
 executive | engaged | vacant | existing | passed
global  G{alphameric}
heritable  H{alphameric}
frontal  F{alphameric}
nodal  N{alphameric}
environmental  TYPE | CONTENT | ADDRESS | QUALITIES | WHERE | BACK |
 PREVIOUS | PREDECESSOR | DOER | RESOURCES | LINK |
 DIRECTION | WHEN | TIME | SPEED | STATE | VALUE | COLOR |
 IN | OUT | STATUS
movement  hop | move | shift | follow
creation  create | linkup | delete | unlink
echoing  state | order | rake | sum | count | first | last | min |
 max | random | average | element | sortup | sortdown |
 reverse | add | subtract | multiply | divide | degree |
 separate | unite | attach | append | common | withdraw |
 access
verification  equal | notequal | less | less[or]equal | more |
 bigger | smaller | heavier | lighter | longer | shorter |
 empty | nonempty | belongs | notbelongs | intersects |
 notintersects
assignment  assign | assignpeers
advancement  advance | slide | repeat
branching  branch | sequential | parallel | if | or | orsequential |
 orparallel | and | andsequential | andparallel |
 choose | firstrespond | cycle | loop | sling | whirl |
 split | fringe

URL: http://dx.doi.org/10.14738/aivp.41.1922 30

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

transference  run | call | input | output | transmit | send | receive
timing  sleep | allowed
granting  contain | release | free | blind |lift | none | stay |
 seize
type  global | heritable | frontal | nodal | environmental |
 matter | number | string | scenario
usage  address | coordinate | content | index | time | speed |
 name | place | center | range | doer | human |
 soldier |robot | node[s] | link[s] | unit

9 Elementary Examples in SGL
Let us consider some elementary scenarios in SGL from the mentioned three worlds (PW, VW, and EW).

(a) Assignment of the sum of three constants 27, 33, and 55.6 to a variable named Result:
assign(Result, add(27, 33, 55.6))

(b) Independent moves in physical space to coordinates (x1, y3) and (x5, y8):
branch(move(place(x1, y3)), move(place(x5, y8)))

(c) Creation of a virtual node Peter:
create(direct, node(‘Peter’))
(d) Extending the previous virtual network (so far containing node Peter only) with a new link-

node pair father of Alex:
advance(hop(direct, node(‘Peter’)),
 create(link(+‘fatherof’), node(‘Alex’)))
(e) Giving direct order to robot Shooter to fire at certain coordinates (x, y):
advance(hop(direct, robot(‘Shooter’)), fire(place(x, y)))
(f) Ordering soldier John to engage robot Shooter to fire at coordinates (x, y), with John

confirming completion of the robot’s action:
advance(hop(direct, soldier(‘John’)),
 if(advance(hop(direct, robot(‘Shooter’)),
 fire(place(x, y))), output(OK)))

10 Simplifications and Use of Conventional Notations
To simplify SGL programs, traditional to existing programming languages abbreviations of operations,
also conventional delimiters can be used too. These can include semicolons for separation of actions
following one another in space (i.e. without the rule advance, but not related to its modification
slide), just using commas for separating of independent branches (omitting the most general rule
branch for such cases), omitting single quotes for strings used as names which do not intersect with
the language variables, the use of traditional characters for arithmetic operations and infix notations,
skipping identification rules in cases where contents are clear without them, or reduction of the
number of parentheses with the help of other characters, like semicolon.

These and similar simplifications should, however, be used with a good deal of caution, especially for
complexly structured and nested scenarios, otherwise may distort the scenario structures, also leading
to their wrong interpretation. With the presence of such deviations, the scenario text can be readily
updated to SGL standards by a preprocessing converter, with subsequent distributed execution by the
networked interpreter oriented and optimized on the universal syntax of Figure 2. For the examples of
the previous section these simplifications may look like follows.

(a) Assignment of the sum of constants to a variable:

Result = 27 + 33 + 55.6

(b) Independent moves in physical space to given coordinates:

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 31

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

move(x1, y3), move(x5, y8) or

move((x1, y3), (x5, y8)) or

move(x1_y3, x5_y8)

(c) Creation of a virtual node:

create(Peter)

(d) Extending the virtual network with a new link-node pair:

hop(Peter); create(+fatherof, Alex)

(e) Giving direct command to a robot to fire:

hop(Shooter); fire(x, y)

 (f) Ordering soldier to engage robot to fire by given coordinates, confirming the action’s
completion:

hop(John); if((hop(Shooter); fire(x, y)), output(OK))

11 SGL Networked Interpretation
The developed technology if used in distributed environments operates as follows. A network of SGL
interpreters (as universal control modules U, Figure 3) embedded into key system points (humans,
robots, sensors, mobile phones, etc.) collectively interprets high-level mission scenarios written in SGL.
Capable of representing any parallel and distributed algorithms, these scenarios can start from any
node, covering at runtime the whole world or its parts needed with operations and control.

Figure 3: Self-Spreading Spatial Scenarios in SGL

The spreading scenarios can create knowledge infrastructures arbitrarily distributed between system
components, as in Figure 4. Navigated by same or other scenarios, these can effectively support
distributed databases, command and control (C2), situation awareness and autonomous decisions, also
simulate any other existing or hypothetic computational and/or control models.

Figure 4: Creation of Spatial Infrastructures

Many SGL scenarios can operate within the same environments, spatially cooperating or competing in
the networked space as overlapping fields of solutions, see Figure 5.

URL: http://dx.doi.org/10.14738/aivp.41.1922 32

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

Figure 5: Spatial Interaction of Different Scenarios

The dynamic network of SGL interpreters covering any distributed spaces, the whole world including,
can be considered as a new type of parallel supercomputer, which can have any (including runtime
changing) networking topology and operate without any central facilities or control. A backbone of the
networked interpreter is its spatial track system providing global awareness and automatic C2 over
multiple distributed processes, also creating, supporting, and managing (including removing when
becoming useless) different distributed information and control resources.

12 Some SGT Application Areas
The following are only some researched, discussed, and reported applications of SGT and SGL
summarizing their advantages, with other application areas and possible solutions in them described
in detail in the existing publications.

Intelligence, Surveillance and Reconnaissance (ISR) [16, 17]. SGT can integrate distributed ISR facilities
into flexible goal-driven systems operating under unified command and control, which can be
automatic. These integrated systems can analyze and properly impact critical infrastructures, both
native and adversary’s, as well as create new infrastructures for a variety of purposes.

Military robotics [18-21]. SGT paves the way for unified transition to automated up to fully unmanned
systems with massive use of advanced robotics. One of practical benefits may be effective management
of advanced robotic collectives, regardless of their size and spatial distribution, by only a single human
operator, due to high level of their internal self-organization and integral external responsiveness.

Human terrain [22, 23]. SGT allows this new topic, originally coined in military, to be considered and
used in a much broader sense and scale than initially planned, allowing us to solve complex national
and international conflicts and problems by intelligent and peaceful, predominantly nonmilitary means,
while fully obeying existing ethical standards.

Air and missile defense [24, 25]. Providing flexible and self-recovering distributed C2 infrastructures it
can, for example, effectively use distributed networks of cheap ground or low-altitude sensors to
discover, trace and destroy multiple cruise missiles with complex routes, versus existing expensive high-
altitude planes, drones, and aerostats (with an example already shown above). Other examples, also
related to ballistic missiles, show the applicability of SGT for the defence against.

Command and Control [26]. Description in SGL of semantic-level military missions is much clearer and
more compact (up to 10 times) than if written in traditional Battle Management Languages (BML). This
simplicity may allow us redefine the whole scenario or its parts at runtime when goals and environment
change rapidly, especially in asymmetric situations and operations, also naturally engage robotic units.

Distributed interactive simulation [27]. The technology can be used for both live control of large
dynamic systems and distributed interactive simulation of them (the latter serving as a look-ahead to
the former), also any combination thereof, with watershed between the two changing at runtime.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 33

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

More on investigated and reported SGL applications can be found in other existing publications, [28-
34] including.

13 Conclusion
We have described ideology, syntax, basics of semantics, and main constructs of a completely different
language, oriented on programming and processing of distributed spaces directly. With the use of it,
the whole distributed world, equipped with communicating SGL interpreters, can be considered as an
integral and universal spatial machine capable of solving arbitrary complex problems in this world
(machine rather than computer as it can directly operate with physical matter and objects too).

Multiple communicating “processors” or “doers” of this machine, being stationary or mobile, can
include humans, computers, robots, smart sensors, any mechanical and electronic equipment capable
of cooperatively solving problems formulated in SGL. Being understandable and suitable for both
manned and unmanned components, the language offers a real way to unified transition to massively
robotized systems, including fully unmanned ones, as within the SGL operational scenarios any
component can easily change its manned to unmanned status and vice versa, and at any moment of
time.

REFERENCES

[1]. P. S. Sapaty, Mobile Processing in Distributed and Open Environments, John Wiley & Sons, New
York, 1999.

[2]. P. S. Sapaty, Ruling Distributed Dynamic Worlds. John Wiley & Sons, New York, 2005.

[3]. P. Sapaty “The World as an Integral Distributed Brain under Spatial Grasp Paradigm”, Book
chapter in Intelligent Systems for Science and Information, Springer, Feb. 4, 2014.

[4]. P. S. Sapaty, “Meeting the world challenges with advanced system organizations”, Book chapter
in: Informatics in Control Automation and Robotics, Lecture Notes in Electrical Engineering, Vol.
85, 1st Edition, Springer, 2011.

[5]. P. Sapaty, “Logic flow in active data”, Book chapter in: VLSI for Artificial Intelligence and Neural
Networks. Springer; Softcover reprint of the original 1st ed. 1991 edition, 2012.

[6]. P. Sapaty, “Distributed technology for global dominance”, In R. Suresh (Ed.), Proceedings of SPIE
Volume 6981, defense transformation and net-centric systems, 2008.

[7]. M. Wertheimer, Gestalt theory, Erlangen, Berlin, 1924, 380 p.

[8]. P. Sapaty, “Gestalt-Based Ideology and Technology for Spatial Control of Distributed Dynamic
Systems”, International Gestalt Theory Congress, 16th Scientific Convention of the GTA,
University of Osnabrück, Germany, March 26 - 29, 2009.

[9]. P. Sapaty, “Gestalt-based integrity of distributed networked systems”, SPIE Europe Security +
Defence, bcc Berliner Congress Centre, Berlin Germany, 2009.

[10]. M. Minsky, The Society of Mind, Simon & Schuster, New York, 1988, 336 p.

[11]. P. S. Sapaty, “Over-Operability in Distributed Simulation and Control”, The MSIAC's M&S Journal
Online. Vol. 4, No 2, 2002, 8 p.

URL: http://dx.doi.org/10.14738/aivp.41.1922 34

http://dx.doi.org/10.14738/aivp.41.1922

Advances in Image and V ideo Processing Vo lume 4, Issue 1, February 2016

[12]. K. Wilber, “Waves, streams, states and self: Further considerations for an integral theory of
consciousness”, Journal of Consciousness Studies 7 (11-12), 2000.

[13]. P. S. Sapaty, "The WAVE Model for advanced knowledge processing", in CAD Accelerators (A.P.
Ambler, P. Agrawal & W.R. Moore, Eds.), Elsevier Science Publ. B.V., 1990.

[14]. P. Sapaty, A Distributed Processing System. European Patent No. 0389655, Publ. 10.11.93,
European Patent Office.

[15]. P. Sapaty, “Crisis Management with Distributed Processing Technology”, International
Transactions on Systems Science and Applications, vol. 1, no. 1, 2006, pp. 81-92.

[16]. P. Sapaty, “Providing Over-operability of Advanced ISR Systems by a High-Level Networking
Technology”, SMI’s Airborne ISR, 26th to 27th October 2015, Holiday Inn Kensington Forum,
London, United Kingdom.

[17]. P .S. Sapaty, “Integration of ISR with Advanced Command and Control for Critical Mission
Applications”, SMi’s ISR conference, Holiday Inn Regents Park, London, 7-8 April 2014.

[18]. P. Sapaty, “Military Robotics: Latest Trends and Spatial Grasp Solutions”, International Journal
of Advanced Research in Artificial Intelligence, Vol. 4, No.4, 2015.

[19]. P. S. Sapaty, “Unified Transition to Cooperative Unmanned Systems under Spatial Grasp
Paradigm”, International journal Transactions on Networks and Communications (TNC), Vol.2,
Issue 2, Apr. 2014.

[20]. P. Sapaty, “High-Level Technology to Manage Distributed Robotized Systems”, Proc. Military
Robotics 2010, May 25-27, Jolly St Ermins, London UK.

[21]. P. Sapaty, “From Manned to Smart Unmanned Systems: A Unified Transition”, SMi’s Military
Robotics, Holiday Inn Regents Park London, 21-22 May 2014.

[22]. P. Sapaty, “Distributed Human Terrain Operations for Solving National and International
Problems”, International Relations and Diplomacy, Vol. 2, No. 9, September 2014.

[23]. P. S. Sapaty, “Solving Social Problems by Distributed Human Terrain Operations”, Journal of
Mathematical Machines and Systems (ММС), №3, 2015.

[24]. P. S. Sapaty, “Distributed air & missile defense with spatial grasp technology”, Intelligent
Control and Automation, Scientific Research, 3(2), 2012, pp. 117-131.

[25]. P. Sapaty, “Distributed Missile Defence with Spatial Grasp Technology”, SMi’s Military Space,
Holiday Inn Regents Park London, 4th-5th March 2015.

[26]. P. Sapaty, “Unified Transition to Cooperative Unmanned Systems under Spatial Grasp
Paradigm”, 19th International Command and Control Research and Technology Symposium,
June 16-19, 2014, Alexandria, Virginia.

[27]. P. S. Sapaty, M. J. Corbin, and P. M. Borst, "Towards the development of large-scale distributed
simulations", Proc. 12th Workshop on Standards for the Interoperability of Distributed
Simulations", IST UCF, Orlando, FL, March 1995, pp. 199-212.

[28]. P. S. Sapaty, “Advanced Naval Operations Under Spatial Grasp Technology”, International

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 35

Peter Simon Sapaty; Spatial Grasp Language (SGL), Advances in Image and Video Processing, Volume 4 No 1,
February (2016); pp: 7-36

3

Conference Naval Combat Systems, 28 - 29 July, 2015 - Park Plaza Victoria, London, United
Kingdom.

[29]. P. Sapaty, “Night Vision under Advanced Spatial Intelligence: A key to Battlefield Dominance”,
SMi’s Night Vision 2013 Conference, London, United Kingdom, 5-6 June 2013.

[30]. P. S. Sapaty, “Providing spatial integrity for distributed unmanned systems”, Proc. 6th
International Conference in Control, Automation and Robotics ICINCO 2009, Milan, Italy, 2009.

[31]. P. Sapaty, M. Sugisaka, M. J. Delgado-Frias, J. Filipe, N. Mirenkov, “Intelligent management of
distributed dynamic sensor networks. Artificial Life and Robotics, 12(1-2), Springer Japan,
March 2008, pp. 51-59.

[32]. P. Sapaty, M. Sugisaka, R. Finkelstein, J. Delgado-Frias, N. Mirenkov, “Emergent Societies: An
Advanced IT Support of Crisis Relief Missions”, Proc. Eleventh International Symposium on
Artificial Life and Robotics (AROB 11th’06), Beppu, Japan, Jan 23-26.

[33]. P. Sapaty, “Grasping the Whole by Spatial Intelligence: A Higher Level for Distributed Avionics”,
Proc. international conference Military Avionics 2008, Jan. 30 - Feb.1, Café Royal, London, UK,
2008.

[34]. P. Sapaty, “Unified transition to cooperative unmanned systems under Spatial Grasp
paradigm”, International Symposium on Artificial Life and Robotics AROB 19th 2014,
January 22-24, 2014. B-Con PLAZA, Beppu, JAPAN.

URL: http://dx.doi.org/10.14738/aivp.41.1922 36

http://dx.doi.org/10.14738/aivp.41.1922
http://www.springerlink.com/content/112249/?p=0418f622f2f04cc7ba2eaf04397dcb13&pi=0

Evidential Segmentation Scheme of Bone Marrow Images

Mourtada Benazzouz, Ismahan Baghli, Amine BENOMAR
Med AMMAR , Youcef Benmouna, Med Amine Chikh

Genie Biomedical Laboratory, Tlemcen university
{m benazzouz,i baghli,mea chikh}@mail.univ-tlemcen.dz

Abstract

The analysis of microscope images can provide useful information concerning health of patients. In this paper
a new and efficient supervised method for color image segmentation is presented. The segmentation here
is to extract leukocytes (white blood cells) and separate its constituents, nucleus and cytoplasm. Since red
cells, leukocytes and background had different color in image of bone marrow smear, they were extracted
according to their own colors. First, we train an SVM in different color spaces by a learning set. SVM with
fixed parameters is used here to yield several classifications, and the basic technique consists on information
fusion from different sources via evidence theory. This combination is performed by integrating uncertainties
and redundancies for each one of the color spaces. From the experiments, we achieve good segmentation
performances in the entire nucleus and cytoplasm segmentation. We evaluate the segmentation performance
of the proposed technique by comparing its results with the cell images manually segmented by an expert.
keywords : Fusion, SVM, Evidence theory, Leukocytes, color spaces.

1 Introduction

Leukocytes or white blood cells (WBC) are cells in the blood that are involved in defending the body against
infective organisms and foreign substances. When an infection is present, the production of WBCs increases.
They play a significant role in the diagnosis of different diseases, and therefore, extracting information about
that is valuable for hematologists. However, it is tedious and time consuming to locate, classify and count
leukocytes. An automated differential counter using image analysis makes it possible to replace the work,
reducing reporting time and increasing accuracy with the larger number of cell counted.

The paper presents the first step for building an automatic system of blood cell recognition, this gait
consists in segmentation of blood cell images, which is a crucial step for automatic cell analysis, because the
success of the final classification depends mainly on the correct image segmentation.

In an attempt to solve the problem, several approaches have been presented in the literature, most of them
utilized the gray level, texture, and color [1]. Several general-purpose algorithms and techniques have been
developed for image segmentation. Since there is no general solution to the image segmentation problem,
these techniques often have to be combined with domain knowledge in order to effectively solve a segmentation
problem for problem domain [2].

Among the common segmentation methods are edge and border detection, region growing, filtering,
mathematical morphology, pixel classification and watershed clustering. A variety of semi-automatic or
automatic WBC segmentation methods have been proposed. Hiremath et al. [3] presented a technique
based on thresholding, morphological operators and statistical texture analysis. Chen et al. [4] used Mean
Shift to extract a few significant samples as training set for pixel classification and recently [5] construct a
segmentation model using simulated visual attention via learning by on-line sampling.

After a preprocessing with SMMT (Self Multiscale Morphological Toggle), Leyza et al. [6] proposed
watershed transform and Level Set Methods for nucleus segmentation and granulometric analysis or mor-
phological transformations for cytoplasm segmentation. GramSchmidt orthogonalization along with a snake
algorithm have been used to segment nucleus and cytoplasm of the cells in [7]. Interesting segmentation
schemes have been presented in [8] by using the Sliding Band Filter to segment blood cell and [9] by com-
bining probability density function and a morphological operation for nucleus and cytoplasm respectively,
also in [10] by using color information and means of K-means to extract nucleus.

37

DOI: 10.14738/aivp.41.1924
Publication Date: 29th February, 2016
URL: http://dx.doi.org/10.14738/aivp.41.1924

The use of multiple classifiers, also called classifier ensembles, is now recognized as a practical and efficient
solution for solving complex pattern recognition problems [11, 12, 13, 14, 15]. The idea behind classifier
ensembles is that different classifiers may potentially offer complementary information about patterns to be
classified, allowing for potentially higher classification accuracy. Others fusion’s studies [16, 17] shown that
this technique has became more and more used to improve the quality of recognition systems in medical
systems.

In this work, we propose an automatic machine-learning method (SVM) to segment blood and bone
marrow cell images. Different from traditional methods of classification, we focus on a few significant sam-
ples rather than all of them. Thus samples are trained in several color spaces in order to benefit of their
complementarities. A confusion of classification may remains when a same pixel belongs to different classes.
Therefore fusion between pixels is taken into account via Dempster shafer’s rule.

The remainder of the paper is structured as follows: in section 2 we describe microscopic images, color
spaces, SVM classification and fusion’s techniques. The main steps of the proposed color segmentation
approach and some results are presented in section 3. Paper is concluded in section 4.

2 Methods and Materials

2.1 Microscopic Cell Images

Our images contain erythrocytes (red cells), leukocytes (white blood cells) platelets and plasma (background)
(Figure 1). The red cells make up about 48% of the blood volume, and carry oxygen and carbon dioxide

Figure 1: A bone marrow smear image

around our body. Normal blood contains 4000-10000 leukocytes/µl of blood. The Leukocytes (nucleus and
cytoplasm) play a vital role in the immune system ; where they eliminate germs such as bacteria and viruses,
and fight cancer cells and other toxic substances [18]. Platelets are small particles and not clinically important
[19].

Our base is constructed from acquired images in hemobiology service (Tlemcen Hospital), on blades with
the MGG coloration (May Grunwald Giemsa). The LEICA environment (camera and microscope) permit to
obtain RGB 24-bit color pictures of 1024 per 768 with good quality format bitmap. The camera is attached
to a Leica microscope with 100 objective magnification.

2.2 Color spaces

Our images come from colored blades, therefore it will be useful to exploit the color information as considered
in several papers [5, 10, 7, 20].

The first step of the proposed scheme concerns the colorimetric transformation of the initial coordinates
system (the RGB space). The question to investigate such transformations is: does exist a color space in which
the representation of the color data is the best to optimally perform the segmentation process? Obviously,
many researches have shown that no color space significantly outperforms the others [21]. Nevertheless, each
color space has been designed to outperform (under its own hypothesis) the others [22].

From this remark, the segmentation process is performed through different colorimetric transformations.
The results of this segmentation step are then fused in order to obtain a final segmented image. To be rather
exhaustive without having to test all existing color spaces, we used five representative color spaces belonging
to the four color spaces families described by [23]. Initially seven color spaces have been experimented but

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in
Image and Video Processing, Volume 4 No 1, February (2016); pp: 37-48

Copyright © Society for Science and Education United Kingdom 38

our choice has focus on five color spaces: RGB (primary spaces) HSL and HSV (perceptual space), LUV
(perceptually uniform spaces) and YUV (spaces of television), cause they have given best results.

The intention of the L*u*v* color space is to produce a color space that is more perceptually linear than
other existing color spaces. Perceptually linear means that a change of the same amount in a color value
should produce a change of about the same visual importance.

The YUV model defines a color space in terms of one luminance and two chrominance components. YUV
is used in the PAL system of color encoding in analog video, which is part of television standards in much
of the world. YUV models human perception of colour more closely than the standard RGB model used in
computer graphics hardware, but not as closely as the HSL colour space.

The HSL colour space (Hue, Saturation, Lightness/ Luminance), is quite similar to the HSV space, also
known as HSB (Hue, Saturation, Brightness). The difference is that the brightness of a pure colour is equal
to the brightness of white, while the lightness of a pure colour is equal to the lightness of a medium gray.
The HSL colour space is often used by artists because it is often more natural to think about a colour in
terms of hue and saturation than in terms of additive or subtractive colour components [24].

As these color spaces have their own properties, it would be useful to exploit them altogether in a whole
segmentation process in order to increase the quality of the results. For this reason, we opted for the use of
several spaces in order to take advantage of complementarity’s spaces.

2.3 Support Vector Machines

Let the training set D be {(xi, li)}i = 1..N with input xi and li = {±1}. SVM [25] first maps x to
y = φ(x) ∈ F . when the data is linearly separable in F , SVM constructs a hyperplane wTz + b for which
separation between the positive and negative examples is maximized.

It can be shown that w =
∑
i=1..N αilizi, where α = (α1, , αN) can be found by solving the following

quadratic programming problem:

min
1

2
αTQα− eTα (1)

Subject to α ≥ 0 and αT l = 0. Where e is the vector of all ones, l = (l1, ..., lN)T and Q has entries
liljz

T
i zj = liljK(xi, xj) where K(xi, xj) is called a Kernel. When the training set is not separable in F , the

SVM algorithm introduces non-negative slack variable ξi ≥ 0. The result problem becomes

min
1

2
‖w‖2 + C

n∑
i

ξi (2)

Subject to li(w
T z + b) ≥ 1 − ξi. C is a regularization parameter controlling the trade off between model

complexity and training error.
The xi for which αi 6= 0 are defined as the support vectors, since they determine the optimal hyperplane,
the hyperplane with maximal margin. Geometrically, the support vectors correspond to the closest to the
optimal hyperplane. The optimal decision functions is

f(x) = sign(
∑
i=1..N

αiliK(xi, x) + b) (3)

In this paper, radial basis function (RBF) is selected as the kernel of SVM, which is

K(xi, xj) = exp(−g ‖xi − xj‖2) (4)

The rest parameters in training are the kernel parameter g and the regularization parameter C of SVM. The
program code and more detailed discussion about C-SVM algorithm can be found at [26].

SVM being binary classifiers, m(m−1)
2 SVM classifiers are induced for a multi-class problem. A final

decision is taken from the outputs of all binary SVM.

2.4 Fusion

A classifier usually designates a recognition tool that provides class membership’s information for a vector
received in input. This tool can be described by a function e that with a feature vector x of the object to
recognize, assign to x the class Cli among k possible ones [27]:

e : x ∈ Rn → K(K ∈ {Cl1, ..., Clk}) (5)

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

Copyright © Society for Science and Education United Kingdom 39

Moreover, the answers provided by the classifier can be classified in three categories [11]:

• Class type: e(x) = Cli(i ∈ [1, k]), indicates that the classifier assigned the class Cli to x,

• Rank type: e(x) = [rj1, ..., r
j
k] where rji is the assigned rank to the class i by the classifier

• Measure type: e(x) = [mj
1, ...,m

j
k] where mj

1 is the measure assigned to the class i by the classifier

For complex detection and classification problems involving data with large intra-class variations and noisy
inputs, perfect solutions are difficult to achieve, and no single source of information can provide a satisfactory
solution. As a result, combination of multiple classifiers (or multiple experts) is playing an increasing role in
solving these complex pattern recognition problems, and has proven to be viable alternative to using a single
classifier.

Classifier combination is mostly heuristic and is based on the idea that classifiers with different method-
ologies or different features can have complementary information. Thus, if these classifiers cooperate, group
decisions should be able to take advantages of the strengths of the individual classifiers, overcome their
weaknesses, and achieve a higher accuracy than any individual’s.

Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. We
opted for 2 types of methods; majority vote (non trainable) and dempster shafer rule.

2.4.1 Fusion based on voting

The well known populous form of voting has gained a great usefulness in based decision fusion. In the voting
based fusion the class is assigned by a classifier which has been considered and valued as a vote for that class
so, we can mention in this step of study three voting versions in which the class winner has been getting an
agreement with all classifiers (anonymous voting) predicted generally by one more then half the classifier’s
number (simple majority), or that receives the highest number of vote whether or not the sum of those vote
attains 50 % (pluarlity voting or just majority voting). the well known popular is the vote majority in which
the voted class taking into consideration most of classifiers will be regarded and valued or estimated as winner
and the input is assigned to that class [28].

2.4.2 Fusion based on evidence theory

Major concepts of this theory are briefly reviewed in the following.
Suppose there is a finite set of mutually exclusive and exhaustive hypotheses Ω = {w1, ..., wn} called the
frame of discernment. A basic belief assignment (BBA) or mass function is a function m : 2Ω → [0, 1], in
which 2Ω is the number of all possible subset of Ω and it satisfies two conditions as mentioned below:{

m(φ) = 0∑
A⊆Ωm(A) = 1

(6)

If A is considered as a subset of Ω(A ⊆ Ω), m(A) indicates the degree of belief that is assigned to the exact
set A and not to any subsets of A. There are also the following two definitions in the theory of evidence that
are derived from mass function: {

Bel(A) =
∑
B⊆Ωm(B)

Pl(A) =
∑
A∩B 6=φm(B)

(7)

Apart from strength of the evidence theory in specifying a degree of uncertainty, it can also combine different
evidences to increase certainty value which results in more accurate decisions.
The method of combining different evidences using Dempsters rule is also called orthogonal sum in which
two independent information sources (m1 and m2) are fused to create a new belief function as shown below:

m(C) =

∑
A∩B=C m1(A)×m2(B)

1−
∑
A∩B=φm1(A)×m2(B)

(8)

Where the denominator can be interpreted as a conflict criterion between independent evidences to be com-
bined [29].

Copyright © Society for Science and Education United Kingdom 40

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

3 Experimentation and results

Twenty seven microscopic images were used to evaluate the proposed segmentation algorithm. Each one
containing cells and all segmented manually by a medical expert in cytopathology to further assess the
recognition quality (Figure 2).

Figure 2: Original image (a), ground truth image (b)

3.1 Training set

After image acquisition, we notice an intraclass variability, which induce us to choose the most representative
samples. We took significant samples from 9 images to construct a learning set and the classification has
been applied on the rest. Different regions were selected from each class (Figure 3); they will form the
reference training set, since our blades undergo the same coloration MGG. We use this set to construct an
SVM classifier for each colour space; the inputs of each SVM are the values of the pixel in its colour space.

Figure 3: (a)nucleus region (b) cytoplasm region (c)erythrocyte region (d)background region

The SVM parameters c and g were optimized after using multiple-fold cross validation. that is often an
off-line task in practice, which leads to the following parameters c=512 and g=0.0001.

3.2 Results

In table 1, we present in order of merit the results of single pixel classifications obtained with all colour space
to further justify the importance of the combination step.

Nucleus Cytoplasm Red Cell Background
HSL 77.17% 31.63% 87.82% 98.95%
HSV 78.01% 38.12% 92.20% 98.76%
RGB 92.23% 40.45% 97.43% 98.47%
LUV 93.53% 29.18% 97.46% 98.11%
YUV 93.35% 41.85% 97.52% 92.52%

Table 1: Obtained accuracy for colour spaces

Copyright © Society for Science and Education United Kingdom 41

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

The first observation is that the class cytoplasm present the lower scores, and this is due to the variability
of its constituent pixels. which create confusion with red blood cells. Moreover, Figure 4 shows that the
separation between red blood cell and cytoplasm is not obvious; the SVM tries to find the separation in space
of higher dimension.

Figure 4: Classes projection

A pixel is called conflicting if it is classified differently in different spaces. In order to generate the final
segmentation map, the intersection of the obtained maps within each one of the trial colour spaces is achieved.
Only conflicting pixels are processed using the theory of evidence. The introduction of the fusion begins with
untrained method (majority vote), then different models of the theory of evidence are presented in Table 2.

We chose two different mass functions, one is directly extracted from the confusion matrix named mass1
and the other along the following Denoeux’s principle named mass2 [30, 31]:{

m(wi) = α exp(−γld2)
m(Ω) = 1−m(wl)

(9)

Where 0 < α < 1 is a constant computed from the obtained a posteriori probabilities provided by the SVM
output for the class wl within the trial colour spaces.
The γ parameter is used to modify the effect of distance in the calculation of the mass and d is the Euclidean
distance between the current pixel and the means characteristic of the class. It was proposed [32] to set
α = 0.95 and γ = 0.05.

The evidence theory offers various modeling assumptions, we opted for two choices: the first hypothesis
(h1) considering only the output class and its complement in the space of discernment, we have noted by
h1(i) and h1(j1, j2, j3). And the second hypothesis taking each output with the others one by one: h2(i),
h2(i, j1), h2(i, j2) and h2(i, j3); where i represent the output of the classifier and j1, j2, j3 the others outputs
different from i.
The first hypothesis was tested using the two mass functions and the second only with mass1 function.

The combination with previous models is realized by two orthogonal sum rules: the associativity (rule1)
between the mass functions [30, 31], or grouping of mass functions according to their outputs (rule2) [32].

From the previous stated, we combine two mass functions (mass1 and mass2) with the two sum rules
(rule1 and rule2) according to the two hypotheses (h1 and h2). This has resulted in six fusion experimentation
in addition to the majority vote, and the results of accuracy and classification rate are presented in Table 2
and 3.

Figure 5 shows the process of segmentation applying the proposed method under the hypothesis above.

3.3 Discussion

Our choice for the SVM classifier is justified by high classification rate and fast pixel classification process.
The experimentation has demonstrated a proposed scheme for segmenting blood cells using integration of
uncertainties and redundancies for each colour space, contrary to majority vote which gives sporadic results;
not based on any learning theory.

Copyright © Society for Science and Education United Kingdom 42

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

Nucleus Cytoplasm Red Cell Background
Majority vote 86.26% 41.93% 96.89% 98.53%

Theory1(H1,mass1,rule1) 91.76% 44.12% 96.98% 98.43%
Theory2(H1,mass1,rule2) 80.99% 40.39% 96.48% 98.49%
Theory3(H1,mass2,rule1) 74.43% 40.63% 86.74% 98.97%
Theory4(H1,mass2,rule2) 74.43% 40.63% 86.74% 98.97%
Theory5(H2,mass1,rule1) 92.59% 39.93% 97.19% 98.52%
Theory6(H2,mass1,rule2) 96.62% 48.81% 93.67% 98.08%

Table 2: Obtained accuracy for Fusion

Nucleus Cytoplasm Red Cell Background
Theory1(H1,mass1,rule1) 94.50% 88.72% 75.72% 96.32%
Theory2(H1,mass1,rule2) 94.46% 89.63% 65.62% 96.60%
Theory3(H1,mass2,rule1) 87.30% 80.41% 63.86% 87.47%
Theory4(H1,mass2,rule2) 87.30% 80.41% 63.86% 87.47%
Theory5(H2,mass1,rule1) 93.25% 89.51% 75.32% 95.11%
Theory6(H2,mass1,rule2) 84.71% 82.25% 78.48% 97.51%

Table 3: Obtained classification rate for Fusion

Nucleus segmentation is highly satisfactory even without requiring fusion. However, statistical analysis
on the conflicting pixels revealed that the most of them belong to the cytoplasm and red cell classes, hence
the necessity of combination(fig6 and table 4).

Nucleus Cytoplasm Red Cell Background
Conflicting pixels 85076 184119 754416 1719458
Corrected pixels 64898 127280 592426 1668646

Table 4: Conflicting pixels

Based on the numerical results, and especially the visual quality of the segmentation, we distinguish
two models (theory1 and theory6) with the function mass1 that gave better accuracy. Also considering the
same hypothesis, the sum rules affect the outputs (theory1/theory2 and theory5/theory6). Note that lower
scores were recorded for models 3 and 4 who had the same behavior. However, the recognition rates show us
that theory1 is best for correcting conflicting pixels. From the images tested, we observed that 89% of the
conflicting pixels have been corrected.

The original images contain red blood cells with a clear area in the center, this led the SVM detect red
cell’s center as a background. But this misclassification does not affect the result since this kind of cells does
not contribute to the diagnostic. It can be corrected by filling operation. A post-processing is needed to
improve the quality of the segmentation; achieved by elimination of artifacts, and also by removing the small
red areas in the cytoplasm region.

The major errors were caused by the following reasons. First, misclassification occurs mainly between
closely related classes (red cells and some cytoplasm regions), no distinction is made between them. Second,
when cytoplasmic granules are as dark as a nucleus or a cytoplasm as bright as a background, they are
classified as a nucleus and a background, respectively. Our post-processing has tried to overcome these
shortcomings cited above by eliminating small regions detected as background inside the cytoplasm and also
by eliminating small regions detected as nucleus inside the cytoplasm.

Even the diagnostic of experts, is based essentially on leukocyte characteristics. Indeed, our segmentation
focus on this type of cell which includes nucleus and cytoplasm (Region Of Interest). After post-processing
we obtained the following accuracy and classification rate(table 5):

The results show that the proposed method is able to yield 96.42% accuracy for nucleus segmentation
and 50.77% for cytoplasm segmentation. (Figure 7)

We found useful to add some visual results (Figure 8) from several regions of interest to justify the

Copyright © Society for Science and Education United Kingdom 43

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

Figure 5: (a) Original image (b) HSL result (c) HSV result (d) RGB result (e) LUV result (f) YUV result
(g) Theory1 result (h) Theory2 result (i) Theory3 result (j) Theory4 result (k) Theory5 result (l) Theory6
result

Theory1 Nucleus Cytoplasm
Accuracy 96.42% 50.77%

Classification rate 93.53% 90.04%

Table 5: Obtained accuracy after post-processing

unconvincing accuracy of the cytoplasm which are mostly due to misclassification in other regions such as
artifacts and platelets.

Our images are noisy (not pretreated images), and often contain overlapping and condensed cells. In
contrast to other methods based on morphology or thresholding, our strategy can achieve higher accuracy
of segmentation especially in complex scenes where watershed, region growing and others have struggling to
segment. In our recent scientific works, we propose a segmentation scheme using pixel classification based on
the fusion of information. The adopted model is guided by the two strategies offered by information fusion,
i.e. classifying separately the data from different sources then merging decisions(what was done in the present
paper), or combining these data to classify them(made in a previous publication [33]).

Automatic recognition of white blood cells in light microscopic images usually consists of major steps,
including: image segmentation, feature extraction and classification. Here, our aim is to accurately segment
the nucleus and cytoplasm components of blood smear images, to further extract attribute for automated
differential counting. According to medical experts, different characteristics of nucleus and cytoplasm are
important features for discrimination of certain leukocyte types. We plan to realize an approach that require
one sub-image for each WBC, and from this sub-image several types of features can be extracted; texture
features, shape features in addition to color features.

4 Conclusion

In this paper, we propose a fusion scheme of colour image segmentation. Our strategy is applicable to noisy
images. Trained SVMs are performed to define separation between classes, followed by segmentation in

Copyright © Society for Science and Education United Kingdom 44

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

Figure 6: Correction rate

Figure 7: (a) Fusion result (b) Post-processing result (c) Ground truth

different colour spaces and a final decision is taken by dempster shafer’s rule.
Our framework has achieved a considerable improvement on the segmentation; among the conflicting

pixels, most of them have been well classified i.e an improvement of 89% by the use of the concepts of
evidence theory.

Future work are envisaged by adding texture attributes to color spaces and proceed to the characterization
stage in order to recognize cell’s type.

5 Acknowledgments

Our team have completed the acquisition of microscopic images and the annotation (labeling) of the different
regions (classes). This base did not exist without the contribution of Mrs. N. Benmansour (Hemobiology
service, Tlemcen Hospital) who opened her service and gave us access to the LEICA microscope and patients
slides. We wish to thank her and express our gratitude.

References

[1] K.Y. Lin, J.H. Wu, and L.H. Xu. A survey on color image segmentation techniques. Journal of Image
and Graphics, 10(1):1–9, 2005.

[2] Pascal Bamford. Empirical Comparison of Cell Segmentation Algorithms Using an Annotated Dataset.
PhD thesis, University of Queensland, Brisbane, Australia, 2003.

[3] Hiremath P.S., Bannigidad Parashuram, and Geeta Sai. Automated identification and classification of
white blood cells (leukocytes) in digital microscopic. IJCA Special Issue on ’Recent Trends in Image
Processing and Pattern Recognition’, pages 59–63, 2010.

[4] Pan Chen, Lu Huijuan, and Cao Feilong. Segmentation of blood and bone marrow cell images via
learning by sampling. ICIC 2009, pages 336–345, 2009.

Copyright © Society for Science and Education United Kingdom 45

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

Figure 8: (a) Original image (b)Region Of Interest (c)Segmented region

[5] Chen Pan, Dong Sun Park, Sook Yoon, and Ju Cheng Yang. Leukocyte image segmentation using
simulated visual attention. Expert Systems with Applications, 39:74797494, 2012.

[6] Leyza Baldo Dorinin, Rodrigo Minetto, and Neucimar Jeronimo Leite. Semi-automatic white blood cell
segmentation based on multiscale analysis. IEEE Trans Inf Technol Biomed, In press, 2012.

[7] Seyed Hamid Rezatofighi and Hamid Soltanian-Zadeh. Automatic recognition of five types of white
blood cells in peripheral blood. Computerized Medical Imaging and Graphics, 35:333343, 2011.

[8] Quelhas P., Marcuzzo M., Mendonca A.M., and Campilho A. Cell nuclei and cytoplasm joint segmen-
tation using the sliding band filter. IEEE Transactions on Medical Imaging,, 29:14631473, 2010.

[9] Ko BC, Gim JW, and Nam JY. Automatic white blood cell segmentation using stepwise merging rules
and gradient vector flow snake. MICRON, 42:695–705, 2011.

[10] Ramin Soltanzadeh, Hossein Rabbani, and Ardeshir Talebi. Extraction of nucleolus candidate zone
in white blood cells of peripheral blood smear images using curvelet transform. Computational and
Mathematical Methods in Medicine, In press, 2012.

[11] Roli F. and Giacinto G. Design of multiple classifier systems. Hybrid methods in pattern recognition,
2002.

[12] Goumas Stefanos K., Dimou Ioannis N., and Zervakis Michalis E. Combination of multiple classifiers for
post-placement quality inspection of components: A comparative study. Information Fusion, 11:149–162,
2010.

[13] Mahdi Tabassian, Reza Ghaderi, and Reza Ebrahimpour. Knitted fabric defect classification for uncer-
tain labels based on dempstershafer theory of evidence. Expert Systems with Applications, 38:5259–5267,
2011.

[14] Rottensteiner Franz, Trinder John, Clode Simon, and Kubik Kurt. Using the dempstershafer method for
the fusion of lidar data and multi-spectral images for building detection. Information Fusion, 6:283–300,
2005.

[15] Hicham Laanaya, Arnaud Martin, Driss Aboutajdine, and Ali Khenchaf. Support vector regression of
membership functions and belief functions application for pattern recognition. Information Fusion,
11:338–350, 2010.

Copyright © Society for Science and Education United Kingdom 46

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

[16] A.-S. Capelle, O. Colot, and C. Fernandez-Maloigne. Evidential segmentation scheme of multi-echo mr
images for the detection of brain tumors using neighborhood information. Information Fusion, 5:203–216,
2004.

[17] Zhang Nan, Ruan Su, Lebonvallet Stephane, Liao Qingmin, and Zhu Yuemin. Kernel feature selection
to fuse multi-spectral mri images for brain tumor segmentation. Computer Vision and Image Under-
standing, 115:256–269, 2011.

[18] W. Lin, J. Xiao, and E. Micheli-Tzanakou. A computational intelligence system for cell classification.
IEEE international conference on information technology applications to biomedecine, May 1998.

[19] Adollah R., Mashor M.Y., Mohd Nasir N.F., Rosline H., Mahsin H., and Adilah H. Blood cell image
segmentation: A review. Biomed 2008, Proceedings, 21:141–144, 2008.

[20] K. Jiang, Q. Liao, and Y. Xiong. A novel white blood cell segmentation scheme based on feature space
clustering. Soft Computing, 10:12–19, 2006.

[21] Meas-Yedid V., Glory E., morelon E., Pinset Ch., Stamon G., , and Olivo-Marin J-C. Automatic
color space selection for biological image segmentation. IAPR 17th International Conference on Pattern
Recognition, 3:514–517, August 2004.

[22] Cyril Meurie, Olivier Lezoray, Louahdi Khoudour, and Abderrahim Elmoataz. Morphological hier-
archical segmentation and color spaces. International Journal of Imaging Systems and Technologies,
20:167178, 2010.

[23] N. Vandenbroucke. Segmentation d’images couleur par classification de pixels dans des espaces d’attributs
colorimtriques adapts. Application l’analyse d’image de football. PhD thesis, University of Lille 1, France,
2000.

[24] Andreas Koschan and Mongi Abidi. Digital color image processing. John Wiley and Sons, Inc, 2008.

[25] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, Chichester, 1998.

[26] Chih-Chung Chang and Chih-Jen Lin. flibsvmg: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 27(2,3):1–27, 2011. Software available at
http://www.csie.ntu.edu.tw/cjlin/libsvm.

[27] H. Zouari, L. Heutte, Y. Lecourier, and A. Alimi. An overview of classifier combination methods in
pattern recognition. RFIA’2002, 2:449–508, 2002.

[28] K. Ghosh, Y. Seng Ng, and R. Srinivasan. Evaluation of decision fusion strategies for effective col-
laboration among heterogeneous fault diagnostic methods. Computers and Chemical Engineering Vol,
35:342–355, February 2011.

[29] M. Tabassian, R. Ghaderi, and R. Ebrahimpour. Knitted fabric defect classification for uncertain labels
based on dempster-shafer theory of evidence. Expert Systems with Applications, 38:5259–5267, May
2011.

[30] T. Denoeux. A k-nearest neighbor classification rule based on dempster-shafer theory. IEEE Transactions
on Systems, Man and Cybernetics, 25(5):804–813, 1995.

[31] L. M. Zouhal and T. Denoeux. An evidence-theoritic k-nn rule with parameter optimization. IEEE
Transactions on Systems, Man and Cybernetics, 28:263–271, 1998.

[32] Salim Chitroub. combinaison de classifieurs : une approche pour l’amlioration de la classification
d’images multisources/multidates de tldtection. Tldection, 4(3):289–301, 2004.

[33] Mourtada Benazzouz, Ismahan Baghli, and Med Amine Chikh. Microscopic image segmentation based
on pixel classification and dimensionality reduction. International Journal of Imaging Systems and
Technology, 23(1):22–28, 2013.

Copyright © Society for Science and Education United Kingdom 47

Mourtada Benazzouz, Ismahan Baghli and Amine BENOMAR; Evidential Segmentation Scheme of Bone Marrow Images, Advances in Image and
Video Processing, Volume 4 No 1, February (2016); pp: 37-47

	AIVP Vol 4 No 1 Feb 2015
	An Efficient Algorithm for Forward Collision Warning Using Low Cost Stereo Camera & Embedded System on Chip
	ABSTRACT
	1 Introduction
	2 Opportunity for Crash Avoidance Systems
	3 Forward Collision Warning Sensors
	3.1 Stereo Camera Sensor

	4 Sensing Algorithms
	4.1 Vehicle Detection
	4.2 Vehicle Detection

	5 Implementation and Optimization on the embedded processor
	6 Conclusion
	References
	Spatial Grasp Language (SGL)
	ABSTRACT
	1 Introduction
	2 SGL Orientation and Peculiarities
	3 The SGL Worlds
	4 Top Sgl Syntax
	5 SGL Main Features
	5.1 How Scenarios Evolve

	6 Sense and Nature of Rules
	6.1 Spatial Variables
	6.2 Control States and Their Hierarchical Merge

	7 Description of Main SGL Constructs
	7.1 Constants
	7.1.1 Information
	7.1.2 Physical Matter
	7.1.3 Custom Constants
	7.1.4 Special Constants
	7.1.5 Compound Constants, Grasps

	7.2 Variables
	7.2.1 Global, Heritable, Frontal, and Nodal Variables
	7.2.2 Environmental Variables

	7.3 Rules
	7.3.1 Movement
	7.3.2 Creation
	7.3.3 Echoing
	7.3.4 Verification
	7.3.5 Assignment
	7.3.6 Advancement
	7.3.7 Branching
	7.3.8 Transference
	7.3.9 Timing
	7.3.10 Granting
	7.3.11 Type
	7.3.12 Usage
	7.3.13 Application
	7.3.14 Aggregated, Grasp

	8 Full SGL Summary
	9 Elementary Examples in SGL
	10 Simplifications and Use of Conventional Notations
	11 SGL Networked Interpretation
	12 Some SGT Application Areas
	13 Conclusion
	References

	AIVP-16-1924

