
	
Advances	in	Social	Sciences	Research	Journal	–	Vol.4,	No.20	
Publication	Date:	Oct.	25,	2017	
DoI:10.14738/assrj.420.3774.	

	

Multach,	M.,	&	Wilcox,	R.	 (2017).	 Some	Results	on	a	Wilcoxon--Mann--Whitney	Approach	 to	 Interactions	 in	a	Two-Way	ANOVA	
Design.	Advances	in	Social	Sciences	Research	Journal,	(420)	35-39.	

	
	

	
Copyright	©	Society	for	Science	and	Education,	United	Kingdom	 35	

	

Some	Results	on	a	Wilcoxon-Mann-Whitney	Approach	to	
Interactions	in	a	Two-Way	ANOVA	Design.	

	
Matthew	Multach	
Dept.	of	Psychology		

University	of	Southern	California	
	

Rand	Wilcox	
Dept.	of	Psychology		

University	of	Southern	California	
	

ABSTRACT	
There	 are	 now	 several	 ways	 of	 characterizing	 an	 interaction	 in	 a	 two-way	 ANOVA	
design.	For	four	independent	random	variables	/0	(0 = 1,⋯ , 4),	let	7 = /1 − /9	and	7∗ =
/: − /4 .	 One	 approach	 is	 based	 on	; = < 7 < 7∗ ,	 which	 represents	 a	 simple	
generalization	 of	 the	Wilcoxon—Mann—Whitney	method.	 Recently,	 two	methods	 for	
making	inferences	about	;	were	derived.	One	goal	in	this	paper	is	to	report	simulation	
results	 indicating	 that	 both	 methods	 can	 be	 unsatisfactory	 when	 there	 is	
heteroscedasticity.	The	main	goal	is	to	describe	an	alternative	approach	that	performs	
much	better	in	simulations.	

	
INTRODUCTION	

Consider	 four	 independent	 random	 variables	 in	 the	 context	 of	 a	 two-by-two	ANOVA	design.	
There	are	now	a	variety	of	methods	aimed	at	dealing	with	some	notion	of	an	interaction	(e.g.,	
De	Neve	&	Thas,	2016;	Gao	&	Alvo,	2005;	Wilcox,	2017a).		Denoting	the	random	variables	by	>? 	
(@ = 1,⋯ ,4),	let	B = >C − >D	and	B∗ = >E − >F.	 One	 way	 of	 proceeding	 is	 to	 focus	 on	G =
H B < B∗ .		Note	that	for	two	groups,	the	Wilcoxon—Mann—Whitney	is	based	on	an	estimate	
of	H >C < 	>D .	 So	 the	 use	 of	G	generalizes	 the	 Wilcoxon--Mann—Whitney	 method	 in	 an	
obvious	way.		
	
Consider	the	goal	of	testing	

IJ: G = 1/2.																										(1)	
	
Recently,	two	methods	for	testing	(1)	were	derived	and	studied	via	simulations	(De	Neve	and	
Thas,	 2016;	Wilcox	2017b).	However,	 extant	 simulation	 results	do	not	 take	 into	 account	 the	
possible	 impact	 of	 heteroscedasticity.	 	 One	 goal	 here	 is	 to	 report	 new	 simulation	 results	
indicating	 that	 both	 methods	 can	 unsatisfactory,	 in	 terms	 of	 controlling	 the	 Type	 I	 error	
probability,	 when	 there	 is	 heteroscedasticity,	 particularly	 when	 there	 are	 unequal	 sample	
sizes.			
	
The	 main	 goal	 is	 to	 describe	 an	 alternative	 method	 that	 performs	 substantially	 better	 in	
simulations,	even	when	there	is	homoscedasticity.	The	methods	stemming	from	both	De	Neve	
&	 Thas	 	 (2016)	 as	Wilcox	 (2017b)	 are	 based	 on	 the	 seemingly	 obvious	 estimate	 of	G,	 say	G,	
which	is	reviewed	in	section	2.	Wilcox	mentioned	an	alternative	estimator	(G	in	section	2),	but	
there	are	no	results	on	how	well	this	estimator	performs	for	the	situation	at	hand.	A	seemingly	
natural	speculation	is	that	surely	G	is	preferable	to	G,	for	reasons	that	will	be	clear	in	section	2.	
But	 simulation	 results	 indicate	 that	G	provides	 adequate	 control	 over	 the	 Type	 I	 error	
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probability	in	a	range	of	situations	where	the	methods	examined	by	De	Neve	and	Thas,	as	well	
as	Wilcox,	are	unsatisfactory.	
	
The	paper	is	organized	as	follows.	Section	2	describes	the	methods	for	testing	(1)	that	are	to	be	
compared.	Section	3	reports	simulation	results	and	section	4	illustrates	the	new	method.		
	

DESCRIPTION	OF	THE	METHODS	
Let	>N? 	(O = 1,⋯ , P?; @ = 1,⋯ ,4)	 be	 a	 random	 sample	 of	 size	P? 	from	 the	@th	 group.	 Then	 an	
unbiased	estimate	of	G	is		
	

G = C
R

S(>NC − >?D <>UE − >VF),																			(2)	
	
where	W = PCPDPEPF,	 and	 the	 indicator	 function	S(>NC − >?D < >UE − >VF)=1	 if	>NC − >?D <
>UE − >VF,	 otherwise	S(>NC − >?D < >UE − >VF)=1.	 The	De	Neve	 and	 Thas	 (2016)	method	 for	
making	inferences	about	G	is	based	in	part	on	a	link	function	X(G)	that	maps	the	unit	interval	
onto	 the	 real	 line.	 De	 Neve	 and	 Thas	 mention	 two	 possibilities:	X ' = '/(1 − ')	and	 the	
probit	link	function	X ' = ΦZC('),	where	Φ(')	is	the	standard	normal	distribution.	Let		
	

&C = S(>NC − >?D < >UE − >VF) − G
?,U,V

D

N
	

&D = S(>NC − >?D < >UE − >VF) − G
N,U,V

D
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N,?,V
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N,?,U
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and		
																																													[D = \](^)

R
&C + &D + &E + &F ,	

	
where	X`(G)	is	the	derivative	of	X.	 	Here	the	focus	is	on	the	probit	link	function,	in	which	case	
X`(G) = 1/a(ΦZC G ),	 where	a	is	 the	 probability	 density	 function	 of	 a	 standard	 normal	
distribution.	 When	 the	 null	 hypothesis	 is	 true,	 De	 Neve	 and	 Thas	 established	 that	
asymptotically,	
	

b = 	
X G − X(0.5)

[
	

	
has	a	standard	normal	distribution.	An	approximate	1 − e	confidence	interval	for	G	is	
	

(XZC{X G − ΦZC 1 − g
D
[)}, XZC{X G + ΦZC 1 − g

D
[)}).	

	
This	will	be	called	method	NT	henceforth.	
	
The	 basic	 percentile	 bootstrap	method	 considered	 by	Wilcox	 (2017b)	 is	 applied	 as	 follows.	
First,	 generate	 a	 bootstrap	 sample	 from	 the	@th	 group	 by	 sampling	 with	 replacement	P? 	
observations	 from	>N? 	(O = 1,⋯ , P?).	 Based	 on	 these	 bootstrap	 samples,	 estimate	G	using	 (2)	
and	 label	 the	 result	G∗.	 Repeat	 this	 process	itimes	 yielding	Gj∗ 	(k = 1,⋯ , i).	i = 500	is	 used	
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here,	which	seems	to	suffice	in	many	situations	in	terms	of	controlling	the	probability	of	a	Type	
I	error	(Wilcox,	2017a).	However,	a	larger	choice	for	i	might	result	in	higher	power	(Racine	&	
MacKinnon,	2007).		
	
Put	 the	Gj∗ 	in	 ascending	 order	 yielding	G(C)∗ ≤ ⋯ ≤ G(m)∗ .	 Let	ℓ = ei/2	and	o = i − ℓ.	 Then	 an	
approximate	1 − e	confidence	interval	for	G	is	 G ℓpC

∗ , G q
∗ .	Let	H∗	be	the	proportion	of	Gj∗ 	less	

than	0.5.	Then	form	Liu	&	Singh	(1997),	a	p-value	when	testing	(1)	is	2min H∗, 1 − H∗ .	
	
As	indicated	in	section	3,	NT	can	be	unsatisfactory	when	the	sample	sizes	are	relatively	small.	
Method	 PB	 performs	 reasonably	well	when	 the	 sample	 sizes	 are	 equal,	 but	 it	 can	 be	 rather	
unsatisfactory	when	 the	 sample	 sizes	 are	 both	 relatively	 small	 and	unequal.	 This	 suggests	 a	
simple	modification.	 Let	( = min PC,⋯ , PF .	Next,	 randomly	 sample,	without	 replacement,	N	
values	from	each	of	the	four	groups	and	let	G	be	the	resulting	estimate	of	G.	Repeat	this	process	
L	times	yielding	GC,⋯ , Guand	let		
	

G = (GC + ⋯+ Gu)/v.	
	
Here,	v = 100	is	used,	which	was	found	to	generally	give	an	estimate	of	G	that	is	very	similar	to	
G.	 Then	 inferences	 are	 made	 about	G	using	 the	 percentile	 bootstrap	 method	 previously	
described,	except	that	bootstrap	estimates	of	G	are	based	on	G	rather	than	G.	This	will	be	called	
method	PB	henceforth.	
																													

SIMULATION	RESULTS	
Simulations	were	used	as	a	partial	check	on	 the	small-sample	properties	of	methods	NT	and	
PB.	Simulation	estimates	of	the	actual	Type	I	error	probability,	when	testing	at	the	0.05	level,	
are	 based	 on	 4000	 replications.	 The	 sample	 sizes	 considered	 were	 PC, PD, PE, PF =
(10,10,10,10),	 (10,10,20,20),	 and	 (20,20,40,40).	 Data	 were	 generated	 from	 four	 types	 of	
distributions:	normal,	 symmetric	 and	heavy-tailed	 (roughly	meaning	 that	outliers	 tend	 to	be	
common),	asymmetric	and	relatively	 light-tailed,	and	asymmetric	and	relatively	heavy-tailed.	
Specifically,	data	are	generated	from	g-and-h	distributions	(Hoaglin,	1985).	Let	Z	be	a	random	
variable	having	a	standard	normal	distribution.	If	Z	has	a	standard	normal	distribution,	then	by	
definition	
	

w = xyz \{ ZC
\

exp	(ℎBD/2),	if	g	>	0	
	

w = BÄ'G(ℎBD/2),	if	g=0	
	
has	 a	 g-and-h	 distribution	 where	 g	 and	 h	 are	 parameters	 that	 determine	 the	 first	 four	
moments.	The	four	distributions	used	here	were	the	standard	normal	(g	=	h	=	0),	a	symmetric	
heavy-tailed	distribution	(h	=	0.2,	g	=	0.0),	an	asymmetric	distribution	with	relatively	light	tails	
(h	=	0.0,	g	=	0.2),	and	an	asymmetric	distribution	with	heavy	tails	(g	=	h	=	0.2).	Table	1	shows	
the	 skewness	 (ÅC)	 and	 kurtosis	 (ÅD)	 for	 each	 distribution.	 Hoaglin	 (1985)	 summarizes	
additional	properties	of	the	g-and-h	distributions.	Once	data	were	generated	from	one	of	these	
four	 distributions,	 (1)	 was	 tested	 using	Ç?>N? 	(O = 1,⋯ , P?; @ = 1,⋯ ,4).	Three	 choices	 for	 the	
(ÇC,⋯ , ÇF)	were	used:	(1,	1,	1	,1),		(4,	4,	1,	1)	and	(1,	1,	4,	4).	These	three	choices	are	labeled	VP	
1,	VP	2	and	VP	3.	 	Simulations	indicate	that	for	VP	3,	and	when	the	sample	sizes	are	unequal,	
both	 NT	 and	 PB	 perform	 reasonably	 well.	 That	 is,	 when	 the	 distributions	 with	 the	 larger	
variances	 are	 associated	with	 the	 larger	 sample	 sizes,	 control	 over	 the	 Type	 I	 probability	 is	
fairly	good.	But	for	VP	2,	this	was	no	longer	the	case.	So	for	brevity,	only	results	for	VP	1	and	VP	
2	are	reported.	
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Table	1.	Skewness	( )	and	Kurtosis	( )	of	the	g-and-h	distribution	

g	 h	 	 	
0.0	 0.0	 0.00	 3.00	
0.0	 0.2	 0.00	 21.46	
0.2	 0.0	 0.61	 3.68	
0.2	 0.2	 2.81	 									155.98	

	
Table	 2	 summarizes	 the	 estimated	 Type	 I	 error	 probabilities.	 Although	 the	 importance	 of	 a	
Type	 I	 error	probability	depends	on	 the	 situation,	Bradley	 (1978)	 suggests	 that	as	a	general	
guide,	when	testing	at	the	0.05	level,	the	actual	level	should	be	between	0.025	and	0.075.	Based	
on	 this	 criterion,	 method	 NT	 is	 unsatisfactory	 in	 nearly	 all	 of	 the	 situations	 considered.	 In	
contrast,	method	PB	satisfies	this	criterion	for	all	of	the	situations	considered.		
	

Table	2.	Estimated	Type	I	Error	Probability,	É = Ñ. ÑÖ	
	 	 	 n=	(10,10,10,10)	 n=	(10,10,20,20)	 n=	(20,20,40,40)	
VP	 g	 h	 NT	 PB	 NT	 PB	 NT	 PB	
1	 0.0	 0.0	 0.079	 0.067	 0.075	 0.069	 0.074	 0.061	
1	 0.0	 0.2	 0.077	 0.060	 0.076	 0.067	 0.080	 0.064	
1	 0.2	 0.0	 0.078	 0.061	 0.075	 0.068	 0.077	 0.064	
1	 0.2	 0.2	 0.078	 0.059	 0.078	 0.064	 0.080	 0.065	
2	 0.0	 0.0	 0.089	 0.060	 0.099	 0.071	 0.091	 0.060	
2	 0.0	 0.2	 0.090	 0.059	 0.092	 0.068	 0.090	 0.061	
2	 0.2	 0.0	 0.090	 0.060	 0.088	 0.067	 0.090	 0.061	
2	 0.2	 0.2	 0.086	 0.066	 0.089	 0.069	 0.090	 0.061	

	
Regarding	 method	 NT,	 it	 is	 noted	 that	 under	 normality	 and	 homoscedasticity,	 with	 n=	
(20,20,20,20),	 the	 estimated	 Type	 I	 error	 probability	 is	 0.066.	 For	 n=	 (40,40,40,40)	 the	
estimate	is	0.057.	Also,	simulation	results	reported	by	De	Neve	and	Thas	(2016)	indicate	better	
control	 over	 the	 Type	 I	 error	 probability	 than	 indicated	 by	 Table	 2	 under	 normality,	
homoscedasticity	and	n=	(10,10,10,10).	 It	 is	unclear,	however,	which	link	function	they	used.	
Switching	 to	 the	 link	 function	X ' = '/(1 − '),	 simulation	 estimates	 were	more	 consistent	
with	their	results.	That	 is,	apparently,	 the	choice	 for	the	 link	function	 is	 important.	However,	
when	 dealing	 with	 unequal	 sample	 sizes	 and	 heteroscedasticity,	 estimated	 Type	 I	 error	
probabilities	were	consistent	with	those	in	Table	2.	For	example,	for	VP	2,	X = 0.2,	ℎ = 0.0	and	
n=	(10,10,20,20),	the	estimate	was	0.09.	Increasing	the	sample	sizes	to	n=	(30,50,70,90),	again	
control	over	the	Type	I	error	probability	is	unsatisfactory.	If	instead	all	of	the	sample	sizes	are	
equal	to	40,	the	estimate	is	0.076,	and	for	a	common	sample	size	of	50	the	estimate	is	0.067.		
	

AN	ILLUSTRATION	
Method	PB	is	illustrated	with	data	from	the	Well	Elderly	2	study	(Clark,	e.g.,	2012).	Generally,	
the	Well	Elderly	2	study	was	designed	to	assess	the	effectiveness	of	an	intervention	program	
aimed	at	improving	the	physical	and	emotional	wellbeing	of	older	adults.	A	portion	of	the	study	
focused	on	measures	of	depressive	symptoms.	Here	we	compare	measures	for	a	control	group	
to	a	 group	 that	 received	 intervention	while	 taking	 into	account	a	 second	 factor:	participants	
who	 identified	 themselves	 as	White,	 versus	 those	who	 did	 not.	 	 First	 it	 is	 noted	 that	 when	
dealing	with	20%	trimmed	means,	a	significant	interaction	is	not	found	at	the	0.05	level	using	
the	method	 in	Wilcox	 (2017a,	 section	7.4.1);	 the	R	 function	bbtrim	was	used.	The	p-value	 is	
0.18.	With	no	 trimming,	 the	 p-value	 is	 0.077.	 Comparing	medians	 via	 a	 percentile	 bootstrap	
method	(using	the	R	function	med2mcp),	the	p-value	is	0.264.	Using	method	PB,	the	p-value	is	
0.12.	So,	of	course,	the	choice	of	method	can	make	a	practical	difference.		The	suggestion	is	that	
by	 considering	 multiple	 notions	 of	 interactions,	 this	 provides	 a	 deeper	 and	 more	 nuanced	
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understanding	regarding	the	nature	of	the	interaction.	Even	if	say	the	20%	trimmed	means	had	
been	significant,	method	PB	provides	a	useful	perspective:	for	randomly	sampled	participants	
from	 each	 of	 the	 four	 groups,	 there	 is	 an	 estimated	 0.435	 probability	 that	 the	 decrease	 in	
depressive	symptoms,	between	the	participants	who	describe	themselves	as	White,	is	less	than	
the	decrease	between	participants	who	do	not	identify	as	White.		
	

CONCLUDING	REMARKS	
In	 summary,	 with	 equal	 sample	 sizes	 of	 at	 least	 50,	 method	 NT	 performed	 fairly	 well.	 But	
otherwise,	 it	 can	be	unsatisfactory	with	respect	 to	 the	Type	 I	error	probability.	Of	particular	
concern	are	situations	where	the	sample	sizes	are	unequal	and	there	is	heteroscedasticity.	In	
contrast,	 method	 PB	 performed	 reasonably	 well	 in	 all	 of	 the	 situations	 considered,	 so	 it	 is	
recommended	for	general	use.			
	
It	 is	noted	 that	method	PB	 can	be	extended	 to	 testing	 linear	 contrasts	when	 there	are	more	
than	 four	 groups	 (Wilcox,	 2017b).	 The	method	 used	 by	Wilcox	 is	 based	 in	 part	 on	 a	 simple	
extension	 of	G,	 which	 was	 motivated	 by	 computational	 issues	 related	 to	 estimating	 the	
distribution	of	a	linear	combination	of	independent	random	variables.	Here,	this	computational	
issue	does	not	arise	when	using	G	unless	the	product	of	the	sample	sizes	exceeds	the	capacity	
of	 the	computer	being	used.	As	previously	noted,	a	 seemingly	natural	 speculation	 is	 that	G	is	
preferable	to	G	for	the	situation	at	hand,	but	the	simulation	results	reported	here	indicate	the	
opposite	conclusion.	
	
Finally,	 the	 R	 functions	 WMWinterci	 and	 interWMWAP	 perform	 methods	 NT	 and	 PB,	
respectively.	Both	are	being	added	to	the	R	package	WRS.	
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