Analysis of Indoor Thermal Comfort of Room Space in the International Standard Hotel Building

Authors

  • Nasrullah Sahid Hasanuddin University
  • Ramli Rahim Hasanuddin University
  • Baharuddin Hamzah Hasanuddin University
  • Rosady Mulyadi Hasanuddin University

DOI:

https://doi.org/10.14738/assrj.62.6195

Keywords:

Indoor Thermal Comfort, Air Temperature, Air Velocity, Solar Radiation, International Standard Hotel

Abstract

The objective of this study was to analyze the indoor thermal comfort of room space international standard hotel buildings. The sample of the study was guests staying at five international standard hotels. The total sample were 1,092 people from five international standard hotels then sampling through Slovin formula of 10% to determine the number of respondents as many as 92 respondents. Primary data was collected through survey and questionnaires. Data was analyzed with software regarding air temperature of international standard hotel rooms both indoor and outdoor has fulfilled the prerequisites of ASHRAE, Thermal Environmental Conditions for Human Occupancy (Standard 55-66).Indoor air temperature of the five hotels observed was between 28.85 °C to 29.54 °C, with the air temperature approaching the comfort zone ranging from 20.5 °C to 27.1 °C. The outdoor air temperature of international standard hotel room space observed is on average range between 28.42 °C to 40.52 °C, with a standard deviation ranging from 0.01 to 0.44. The maximum value is between 28.45 °C to 41.41 °C and a minimum value is 28.40 °C to 39.87 °C. Solar radiation on international standard hotel building observed is in an average range between 32.79 watts / m2 to 769.75 watts / m2, with a standard deviation ranging from 0.95 to 285.43 watts / m2. The maximum value is between 36.37 to 918.97 watts / m2 and a minimum value is between 30.08 to 715.63 watts / m2. Solar radiation has a major influence in changing the indoor thermal comfort temperature in hotel rooms.

References

. Bohdanowicz, P., & Martinac, I. M. (2002). Thermal Comfort and Energy Saving in the Hotel Industry. AMS 15th Conference on Biometeorology and Aerobiology & 16th International Congress on Biometeorology, 28 October-1 November, Kansas City, USA.

. ANSI/ASHRAE. (2017). Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy. ASHRAE, Atlanta.

. ISO. (2005). ISO 7730—Moderate thermal environments— Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. Geneva: International Organization for Standardization.

. Gagge, A. P., Stolwijk, J. A. J., & Hardy, J. D. (1967). Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environmental research, 1(1), 1-20.

. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.

. Alfano, F. R. D. A., Olesen, B. W., & Palella, B. I. (2017). Povl Ole Fanger’s impact ten years later. Energy and Buildings, 152, 243-249.

. Lala, B. (2017). Analysis of Thermal Comfort Study in India. International Conference on Civil, Architecture, Environment and Waste Management (CAEWM-17)

. Fabbri, K. (2015). A brief history of thermal comfort: from effective temperature to adaptive thermal comfort. In Indoor Thermal Comfort Perception (pp. 7-23). Springer, Cham.

. Santoso, E. I. (2012). Kenyamanan Termal Indoor pada Bangunan di Daerah Beriklim Tropis Lembab. The Indonesian Green Technology Journal, 1(1), 13-19.

. Kyriaki, E., Drosou, V., & Papadopoulos, A. M. (2015). Solar thermal systems for low energy hotel buildings: state of the art, perspectives and challenges. Energy Procedia, 78, 1968-1973.

. Ma, L., Gao, Z., Wang, Y., Sun, Y., Zhao, J., & Feng, N. (2017). Numerical Simulation of Soil Thermal Response Test with Thermal-dissipation Corrected Model. Energy Procedia, 143, 512-518.

. Kim, J. H., Min, Y. K., & Kim, B. (2013). Is the PMV index an indicator of human thermal comfort sensation. International Journal of Smart Home, 7(1), 27-34.

. O'HEGARTY, R., Kinnane, O., & McCormack, S. (2015). Efficiency analysis of flat plate collectors for buidling façade integration. In Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale (No. CONF, pp. 735-740). LESO-PB, EPFL

. Hendrarto, T., Sulastio, O., & Afrinaldi, D. (2012). Kajian Proporsi Ruang-Dalam Bangunan Baru Hotel Concordia Bandung. REKA KARSA, Jurusan Arsitektur Itenas No. 1, Vol. I, Juli 1(1).

. Pynkiawati, T., Wahadamaputera, S., Adiwibowo, F., Lestari, R. R., & Septaningsih, D. P. (2009). Kajian Desain Sirkulasi Ruang Dalam sebagai Sarana Evakuasi Kebakaran pada Bangunan Hotel Carrcadin Bandung. Jurnal Itenas Rekayasa, 13(4).

. Rupp, R. F., Vásquez, N. G., & Lamberts, R. (2015). A review of human thermal comfort in the built environment. Energy and Buildings, 105, 178-205.

. Tharziansyah, M., & Rahman, A. (2008). Analisis Tingkat Kenyamanan Thermal Webb Di Rumah Tinggal T-45 Pada Musim Kemarau. Infoteknik, 9(1), 36-42.

. Gandhi, P., Paritosh, K., Pareek, N., Mathur, S., Lizasoain, J., Gronauer, A., ... & Vivekanand, V. (2018). Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed research international, 2018. https://doi.org/10.1155/2018/9416249.

. ANSI/ASHRAE. (2013). Standard 55: 2013, Thermal Environmental Conditions for Human Occupancy. ASHRAE, Atlanta.

. Hamzah, B., Gou, Z., Mulyadi, R., & Amin, S. (2018). Thermal Comfort Analyses of Secondary School Students in the Tropics. Buildings, 8(4), 56

. BSN. SNI 03-6572-2001. (2001). Tata Cara Perancangan Sistem Ventilasi dan Pengkondisian Udara pada Bangunan Gedung. Jakarta: Standar Nasional Indonesia.

. Auliciems, A., & Szokolay, S. V. (2007). Thermal comfort. PLEA. Notes: Note 3 Thermal Comfort; PLEA: Passive and Low Energy Architecture International in association with Department of Architecture, The University of Queensland: Brisbane, Australia

. Zhang, Z., Ma, C., & Zhu, R. (2018). Thermal and Energy Management Based on Bimodal Airflow-Temperature Sensing and Reinforcement Learning. Energies, 11(10), 2575. https://doi:10.3390/en11102575

. Alwetaishi, M. (2016). Impact of building function on thermal comfort: A review paper. Am. J. Eng. Appl. Sci, 9, 928-945.

. Kosonen, R., Saarinen, P., Koskela, H., & Hole, A. (2010). Impact of heat load location and strength on air flow pattern with a passive chilled beam system. Energy and Buildings, 42(1), 34-42.

. Jaffal, I., Ouldboukhitine, S. E., & Belarbi, R. (2012). A comprehensive study of the impact of green roofs on building energy performance. Renewable energy, 43, 157-164

. Kuchen, E. (2016). Variable Thermal Comfort Index for Indoor Work Space in Office Buildings: A Study in Germany. Open Journal of Civil Engineering, 6(04), 670.

. Nicol, F. (2004). Adaptive thermal comfort standards in the hot–humid tropics. Energy and buildings, 36(7), 628-637.

Downloads

Published

2019-03-08

How to Cite

Sahid, N., Rahim, R., Hamzah, B., & Mulyadi, R. (2019). Analysis of Indoor Thermal Comfort of Room Space in the International Standard Hotel Building. Advances in Social Sciences Research Journal, 6(2), 504–527. https://doi.org/10.14738/assrj.62.6195