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Abstract: The proliferation of artificial intelligence (AI) systems has exposed critical 
vulnerabilities in their supply chains, encompassing models, datasets, training pipelines, 
and dependencies, which introduce risks such as data poisoning, model theft, and 
adversarial attacks. These threats extend beyond traditional software supply chain 
concerns, necessitating specialized security measures to ensure trustworthiness in AI 
deployments across critical sectors. Despite advancements in software bills of materials 
(SBOMs) driven by initiatives like U.S. Executive Order 14028, existing frameworks 
inadequately address AI-specific artifacts and provenance requirements, leaving a 
significant gap in comprehensive risk management. This paper aims to propose a robust 
framework for operationalizing secure AI supply chains. The key contribution lies in 
extending SBOM standards to AI components, integrating provenance verification into 
MLOps pipelines, aligning with governance frameworks such as NIST SSDF and AI RMF, and 
applying zero-trust principles to AI artifacts. Findings demonstrate that these measures 
enable proactive vulnerability mitigation, enhanced transparency, and regulatory 
compliance, thereby advancing resilient and accountable AI systems. These contributions 
strengthen the field by providing actionable strategies that balance innovation with 
security, fostering greater trust in AI technologies. 

Keywords: AI supply chain security; AI SBOM, provenance tracking; MLOps security; zero-
trust AI 

 

INTRODUCTION  

Artificial intelligence now underpins critical digital and physical systems. From healthcare 

diagnostics to national infrastructure, AI influences high-stakes decisions. However, this 

rapid adoption introduces new and poorly understood security risks. Unlike traditional 

software, AI systems depend on complex, multi-stage supply chains. These supply chains 

span data collection, model training, deployment, and continuous updates. 

 As a result, trust assumptions increasingly shift outside organizational control. 

Recent research highlights growing concern over software supply chain compromises [1]. 

Nevertheless, AI systems introduce distinct and amplified attack surfaces. Training data may 

be poisoned before model development begins. Pretrained models can be tampered with 

prior to deployment. Dependencies may be altered silently across distributed pipelines. 

Consequently, conventional software security practices prove insufficient. 

 Historically, software supply chain security focused on code provenance and 

dependencies. This led to the emergence of Software Bills of Materials, or SBOMs. SBOMs 

provide structured visibility into software components and libraries [2]. Governments and 

industry rapidly adopted SBOMs to improve transparency. For example, U.S. Executive Order 
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14028 formally institutionalized their use [3]. However, these mechanisms were not 

designed for AI-native systems. 

 AI pipelines differ fundamentally from deterministic software workflows. Models 

evolve through probabilistic training rather than explicit programming. Datasets often 

originate from heterogeneous and external sources. Model weights may change during fine-

tuning or continuous learning. Toolchains frequently span open-source frameworks and 

proprietary platforms. Therefore, traditional SBOMs fail to capture critical AI artifacts. 

 Meanwhile, researchers have documented novel AI supply chain attacks. These 

include data poisoning, model backdooring, and dependency hijacking [4]. Such attacks are 

difficult to detect post-deployment. Moreover, attribution remains challenging without 

reliable provenance records. As AI systems scale, these risks propagate across organizations 

and sectors. Thus, visibility and verification become foundational security requirements. 

 In response, model provenance has emerged as a promising research direction. 

Provenance seeks to record model origin, training history, and transformations. However, 

existing approaches remain fragmented and inconsistent. Some focus on metadata logging, 

while others emphasize auditability. Few integrate cryptographic guarantees or 

standardized representations [5]. 

 Assurance remains largely informal. At the same time, governance frameworks 

increasingly demand explainability and traceability. The NIST Secure Software Development 

Framework emphasizes component integrity [6]. Similarly, the NIST AI Risk Management 

Framework highlights lifecycle risk management. International regulators now expect 

documentation of AI system origins and behavior. Yet, organizations lack concrete technical 

mechanisms to meet these expectations. This gap exposes both security and compliance 

vulnerabilities. 

 Accordingly, this paper addresses the problem of insecure AI supply chains. We 

propose a unified framework for AI Software Bills of Materials. The framework extends SBOM 

concepts to datasets, models, and runtimes. Additionally, it integrates end-to-end model 

lineage tracking. Cryptographic provenance mechanisms provide integrity and authenticity 

assurances. Together, these elements mitigate tampering, poisoning, and dependency risks.  

 Securing AI supply chains requires AI-native security abstractions. This work 

contributes toward operationalizing trust across the AI lifecycle. The framework advances 

trustworthy AI deployment by aligning technical controls with governance requirements. 

 

LITERATURE REVIEW 

Research on AI supply chain security has evolved alongside broader concerns in software 

supply chain integrity. Early studies primarily focused on traditional software dependencies, 

emphasizing transparency and traceability through Software Bills of Materials (SBOMs) [7]. 

These efforts were motivated by large-scale supply chain compromises that demonstrated 

the fragility of modern software ecosystems. SBOMs emerged as a foundational mechanism 

for enumerating components and managing risk, eventually gaining institutional support 

through national cybersecurity initiatives [8]. However, this literature largely assumes 

deterministic software artifacts and fails to address AI-specific complexities. 
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 Subsequent research began identifying limitations of traditional SBOMs when applied 

to machine learning systems. AI pipelines incorporate datasets, model architectures, 

pretrained weights, and dynamic training environments, none of which are adequately 

represented in conventional SBOM schemas [9]. Studies highlight that datasets themselves 

function as first-class dependencies, introducing new attack vectors such as data poisoning 

and label manipulation [10]. Despite this recognition, proposed extensions often remain 

conceptual, lacking operational guidance for real-world AI deployments. 

 Parallel work in adversarial machine learning expanded the understanding of AI-

specific supply chain threats. Research demonstrated how malicious actors could embed 

backdoors during training or fine-tuning phases, resulting in models that behave normally 

under testing but fail under specific triggers [11]. Other studies explored dependency-level 

attacks, where compromised libraries or pretrained models propagate vulnerabilities 

downstream [12]. Collectively, this body of work established that AI systems inherit risks 

not only from code but also from data provenance and model lineage. 

 In response, model provenance emerged as a distinct research area. Existing 

approaches focus on tracking training metadata, version histories, and transformation 

records [13]. Some methods propose logging-based lineage systems integrated into MLOps 

pipelines, while others emphasize audit trails for regulatory compliance. However, the 

literature notes that most provenance systems rely on mutable logs or centralized trust 

assumptions, limiting their effectiveness against sophisticated adversaries [14]. As a result, 

provenance is often treated as documentation rather than a verifiable security control. 

 More recent studies explore cryptographic techniques to strengthen AI provenance 

assurances. Hashing of model artifacts, digital signatures for training outputs, and 

hardware-backed attestations have been proposed to ensure integrity and authenticity [15]. 

These approaches align with advances in secure enclaves and trusted execution 

environments, enabling verification of training and inference conditions. Nevertheless, 

adoption remains limited due to integration complexity and the absence of standardized 

frameworks. 

 The literature review reveals a fragmented landscape. SBOM research provides 

structural transparency but lacks AI awareness. Adversarial machine learning exposes supply 

chain risks without offering lifecycle controls. Provenance systems document history but 

rarely enforce trust. Cryptographic methods strengthen assurances but lack integration. 

Consequently, there is limited work that unifies these strands into a coherent, AI-native 

supply chain security framework. This gap motivates the need for an integrated approach 

that combines AI SBOMs, model lineage tracking, and cryptographic provenance to secure 

AI systems end to end. 

 

PROBLEM STATEMENT: SYSTEMIC INSECURITY IN THE AI SUPPLY CHAIN 

The rapid integration of artificial intelligence into critical systems has exposed structural 

weaknesses in how AI artifacts are developed, distributed, and deployed. Unlike traditional 

software, AI systems are constructed through multi-stage pipelines involving data 

acquisition, iterative training, third-party dependencies, and continuous updates. These 

pipelines often span organizational and geographic boundaries, introducing implicit trust 

assumptions that are rarely examined or enforced. As a result, AI supply chains increasingly 
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operate as opaque ecosystems where component integrity and origin cannot be reliably 

verified. 

 This systemic opacity creates a foundational security problem. Without 

comprehensive visibility into the components that constitute an AI system, organizations 

struggle to assess risk, respond to incidents, or meet emerging governance requirements. 

The lack of standardized mechanisms for documenting AI artifacts undermines both security 

assurance and accountability. Consequently, vulnerabilities introduced at any stage of the 

AI lifecycle can propagate silently into production environments. 

 Moreover, existing security practices were largely designed for static, code-centric 

systems. When applied to AI pipelines, these practices fail to account for probabilistic 

behavior, dynamic retraining, and data-driven logic. This mismatch between AI system 

complexity and security controls necessitates a reevaluation of supply chain security models 

tailored specifically to AI. 

 

Fragmentation of AI Supply Chain Visibility 

AI supply chains are characterized by fragmented visibility across development, training, 

and deployment phases. Data sources, preprocessing pipelines, pretrained models, and fine-

tuned weights are often managed by separate teams or external vendors. This fragmentation 

results in partial documentation at best, with no unified view of how individual components 

interact or evolve over time. Consequently, AI artifacts entering production environments 

frequently lack verifiable histories. 

 The absence of standardized enumeration mechanisms exacerbates this problem. 

While software dependencies can be cataloged using existing tools, AI-specific assets such 

as datasets and training configurations remain inconsistently documented. Model artifacts 

are frequently shared without sufficient context regarding their origin, transformations, or 

validation status. This lack of transparency hinders risk assessment and complicates incident 

response when anomalies are detected. 

 Furthermore, fragmented visibility impedes accountability across the AI lifecycle. 

When failures or security breaches occur, organizations often cannot determine whether 

the root cause originated in data collection, model training, or deployment. Without end-

to-end traceability, responsibility becomes diffuse, delaying remediation efforts and 

increasing systemic risk. 

 

Inadequacy of Traditional SBOMs For AI Systems 

Traditional Software Bills of Materials were designed to address risks associated with code 

dependencies and libraries. These tools assume deterministic behavior and static artifacts, 

making them ill-suited for AI systems. AI pipelines introduce non-deterministic training 

processes, iterative parameter updates, and continuous model evolution, none of which are 

captured by conventional SBOM representations. 

 Training data lineage represents a critical blind spot in existing SBOM approaches. 

Datasets directly influence model behavior, yet their provenance, quality, and 

transformations are rarely documented in a structured manner. Similarly, pretrained and 
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fine-tuned models often undergo multiple modifications that are not reflected in versioning 

systems designed for source code. This leaves significant attack surfaces undocumented and 

unmonitored. 

 As a result, organizations relying on traditional SBOMs gain a false sense of security. 

While software dependencies may appear well-governed, AI-specific risks remain 

unaddressed. This gap underscores the need for AI-native extensions that formally recognize 

data, models, and training environments as first-class supply chain components. 

 

Escalating AI Supply Chain Threat Landscape 

The AI supply chain has become an attractive target for adversaries due to its complexity 

and lack of visibility. Attacks such as data poisoning can subtly influence model behavior 

without triggering traditional security alerts. Similarly, malicious model substitution enables 

adversaries to replace trusted models with compromised versions that retain expected 

performance under normal conditions. These attacks are particularly difficult to detect once 

models are deployed. 

 Dependency hijacking further amplifies risk within AI ecosystems. Many AI pipelines 

rely on open-source frameworks, pretrained models, and shared datasets obtained from 

external repositories. Compromised dependencies can introduce vulnerabilities that 

propagate across multiple downstream systems. In the absence of comprehensive tracking, 

these risks often remain latent until exploitation occurs. 

 Detection and attribution remain significant challenges in this threat landscape. 

When anomalous behavior is observed, organizations frequently lack the forensic evidence 

needed to identify the source of compromise. This limitation not only hinders response 

efforts but also reduces the effectiveness of deterrence, allowing adversaries to exploit AI 

supply chains with relative impunity. 

 

Absence of Verifiable Model Provenance and Integrity Guarantees 

Most AI deployments rely on implicit trust in model artifacts and training processes. Models 

are typically treated as opaque binaries, with limited mechanisms to verify their origin or 

integrity. Without cryptographic assurances, organizations cannot confirm whether a model 

has been altered during storage, transfer, or deployment. This creates opportunities for 

undetected tampering across the AI lifecycle. 

 The lack of verifiable provenance also undermines confidence in training 

environments. Training pipelines may involve distributed infrastructure, shared hardware, 

or third-party platforms, each introducing potential points of compromise. Without 

attestations or integrity checks, there is no reliable way to validate that models were 

trained under expected conditions using approved resources. 

 Consequently, post-training modifications often go unnoticed. Fine-tuning, 

optimization, or format conversion steps may alter model behavior in subtle ways, yet these 

changes are rarely recorded or verified. This absence of integrity guarantees erodes trust in 

AI systems and limits the ability of organizations to demonstrate compliance with emerging 

security and governance expectations. 
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SOLUTION: A UNIFIED FRAMEWORK FOR AI SBOM AND MODEL PROVENANCE 

ASSURANCE 

The proposed solution addresses systemic AI supply chain insecurity through an integrated 

framework that combines AI-native Software Bills of Materials, continuous model lineage 

tracking, and cryptographic provenance validation. Rather than treating these elements as 

isolated controls, the framework unifies them into a cohesive architecture spanning the 

entire AI lifecycle. This integration enables consistent visibility, verification, and 

enforcement across development, training, deployment, and operational phases. 

 By embedding security and traceability directly into AI workflows, the framework 

shifts supply chain assurance from a reactive to a proactive posture. Security guarantees 

are established early in the lifecycle and continuously maintained as models evolve. This 

approach aligns with modern secure-by-design principles while remaining adaptable to 

diverse AI deployment contexts, including enterprise, cloud, and edge environments. 

 

Formalizing an AI-Native Software Bill of Materials (AI SBOM) 

At the core of the framework is a formalized AI-native Software Bill of Materials designed 

to capture the full spectrum of AI system components. Unlike traditional SBOMs that focus 

primarily on code dependencies, the AI SBOM enumerates datasets, model architectures, 

trained weight artifacts, toolchains, and runtime environments. Each component is treated 

as a first-class entity with associated metadata describing its origin, version, and 

transformation history. 

 This formalization establishes comprehensive visibility across the AI lifecycle. 

Datasets are documented with provenance information, preprocessing steps, and usage 

constraints. Model architectures and weight artifacts are versioned and linked to specific 

training configurations. Toolchains and runtime environments are included to account for 

variations in behavior arising from hardware acceleration or library versions. Together, 

these elements create a unified representation of the AI system’s composition. 

 The AI SBOM serves both security and governance functions. From a security 

perspective, it enables systematic risk assessment and dependency analysis. From a 

governance standpoint, it provides structured documentation to support audits, compliance 

reporting, and incident response. By standardizing how AI components are described and 

linked, the AI SBOM forms the foundation for trustworthy AI supply chain management. 

 

End-to-End Model Lineage and Lifecycle Tracking 

Building upon the AI SBOM, the framework implements end-to-end model lineage tracking 

across all stages of the AI pipeline. Lineage records are established at data ingestion and 

persist through training, fine-tuning, validation, deployment, and inference. Each transition 

captures contextual metadata, including configuration changes, environmental conditions, 

and responsible entities. 

 This continuous tracking enables traceability and accountability throughout the 

model lifecycle. When a model is updated or retrained, the lineage record reflects the 

precise inputs and processes involved. During deployment, lineage information links running 
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instances back to their training artifacts and datasets. This visibility supports rapid root-

cause analysis when anomalies or security incidents arise. Moreover, lifecycle tracking 

supports controlled evolution of AI systems. Organizations can assess the impact of changes 

before deployment and enforce policies governing retraining or fine-tuning. By making 

lineage an integral part of AI operations, the framework ensures that model behavior 

remains explainable and auditable over time. 

 

Cryptographic Provenance Validation Mechanisms 

To provide strong integrity and authenticity guarantees, the framework incorporates 

cryptographic provenance validation mechanisms. Hashing is used to uniquely identify 

datasets, model weights, and configuration artifacts at each lifecycle stage. Digital 

signatures bind these artifacts to trusted entities, ensuring that only authorized 

modifications are recognized as valid. 

 Hardware-backed attestations further strengthen trust in training and deployment 

environments. Trusted execution environments and secure enclaves can attest to the 

integrity of training pipelines and inference platforms. These attestations provide verifiable 

evidence that models were trained and executed under approved conditions, reducing 

reliance on implicit trust assumptions. Together, these cryptographic controls transform 

provenance from passive documentation into an enforceable security mechanism. 

Unauthorized modifications are detectable through hash mismatches or invalid signatures. 

This capability significantly reduces the risk of undetected tampering and enables 

automated verification during deployment and runtime checks. 

 

Threat-Aware Supply Chain Security Architecture 

The framework is designed around a structured threat-aware security architecture that 

explicitly maps adversarial tactics to defensive controls. Common AI supply chain threats, 

including data poisoning, model backdooring, dependency hijacking, and infrastructure 

compromise, are systematically analyzed and addressed within the framework. Each threat 

category is associated with specific detection and mitigation mechanisms. 

 The framework enables proactive risk management by integrating threat modeling 

into the architecture. AI SBOMs expose vulnerable dependencies, lineage tracking highlights 

anomalous changes, and cryptographic validation enforces integrity. These controls work in 

concert to provide layered defenses across the AI lifecycle. 

 Importantly, the threat-aware design supports continuous adaptation. As new attack 

techniques emerge, threat models can be updated and corresponding controls refined 

without restructuring the entire system. This flexibility ensures that the framework remains 

effective in the face of an evolving AI threat landscape while maintaining alignment with 

secure development and deployment practices. 

 

RECOMMENDATION: OPERATIONALIZING SECURE AI SUPPLY CHAINS 

The rapid integration of artificial intelligence into critical systems demands a proactive 

approach to securing the AI supply chain, encompassing models, datasets, training pipelines, 
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and dependencies. Operationalizing security requires shifting from traditional software-

focused practices to comprehensive frameworks that address AI-specific risks, such as data 

poisoning, model theft, and adversarial attacks. By implementing structured 

recommendations, organizations can enhance transparency, resilience, and trustworthiness 

across the AI lifecycle, aligning with evolving threats and regulatory expectations. 

 Key strategies include automating provenance tracking, enforcing rigorous 

verification processes, and fostering collaboration across stakeholders. This not only 

mitigates vulnerabilities but also supports compliance with emerging standards, ensuring 

that AI deployments remain secure and accountable. Ultimately, a robust secure AI supply 

chain framework enables innovation while minimizing exposure to supply chain compromises 

that could lead to widespread operational or societal harms. 

 

Standardization of AI SBOM Specifications 

Industry stakeholders and standards organizations must prioritize the development of 

interoperable AI-specific Software Bill of Materials (SBOM) formats to effectively manage 

risks in AI systems. Building on established standards like SPDX and CycloneDX, these 

extensions should incorporate unique AI elements, including model architectures, training 

datasets, hyperparameters, and provenance metadata. Recent advancements, such as SPDX 

3.0 profiles for AI and datasets, and CycloneDX support for machine learning models, 

demonstrate progress toward capturing the full lifecycle of AI artifacts beyond traditional 

software components. 

 Such standardized AI SBOMs—often referred to as AI-BOMs—enable detailed 

traceability and vulnerability assessment, addressing gaps in current SBOMs that overlook 

data lineage and model-specific dependencies. Collaboration among bodies like OWASP, the 

Linux Foundation, and NIST is essential to ensure these formats are machine-readable, 

extensible, and widely adopted. This standardization facilitates automated scanning, risk 

prioritization, and regulatory reporting, ultimately fostering greater trust in deployed AI 

systems. 

 By promoting consistency across tools and ecosystems, these specifications enable 

organizations to securely share and verify AI component inventories, reducing the risk of 

hidden vulnerabilities introduced by third-party models or datasets. 

 

Integration with Secure MLOps and CI/CD Pipelines 

Organizations must seamlessly incorporate AI SBOM generation and provenance verification 

into Machine Learning Operations (MLOps) and Continuous Integration/Continuous 

Deployment (CI/CD) workflows to achieve ongoing security assurance. This involves 

automating the creation of bills of materials for models, datasets, and dependencies at key 

stages, such as data ingestion, training, and deployment, using tools that emit signed 

attestations like in-toto. Integrating these processes ensures that every artifact is validated 

for integrity and origin before advancing in the pipeline, preventing compromised 

components from propagating. 

 Secure MLOps practices extend DevSecOps principles to AI, embedding checks for 

issues like data poisoning or backdoor injections through continuous monitoring and policy 
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enforcement gates. For instance, training jobs can produce model cards and attestations 

capturing base model digests, dataset snapshots, and code commits, which are then 

attached to registry entries for tamper-proof records. This automation not only streamlines 

compliance but also enables rapid response to vulnerabilities by maintaining up-to-date 

inventories. 

 Adopting these integrations transforms AI development from ad-hoc experimentation 

into a governed, reproducible process, significantly reducing supply chain risks while 

supporting scalable deployment in enterprise environments. 

 

Alignment with National and International Governance Frameworks 

Secure AI supply chain practices should be explicitly mapped to established regulatory and 

policy frameworks to ensure comprehensive risk management and interoperability. 

Alignment with initiatives such as the NIST Secure Software Development Framework (SSDF), 

U.S. Executive Order 14028 on cybersecurity, the NIST AI Risk Management Framework (AI 

RMF), and emerging global standards like the EU AI Act provides a structured foundation for 

governance. These frameworks emphasize transparency, provenance tracking, and third-

party risk assessment, which directly apply to AI components through extended SBOM 

requirements and attestations. 

 Organizations integrate these guidelines to address core functions like governing AI 

risks, mapping supply chain dependencies, measuring impacts, and managing ongoing 

threats as outlined in the NIST AI RMF. This alignment facilitates audit-ready evidence for 

data provenance, model lineage, and accountability, supporting compliance with 

international regimes focused on trustworthy AI. Cross-referencing with EO 14028's software 

supply chain enhancements further strengthens defenses against vulnerabilities in federal 

and critical infrastructure contexts. 

 Such harmonization not only mitigates legal and operational risks but also promotes 

consistent best practices across borders, enabling collaborative advancements in secure AI 

deployment. 

 

Adoption of Zero-Trust Principles for AI Artifacts 

Applying zero-trust principles to AI artifacts requires treating models, datasets, and 

dependencies as inherently untrusted, mandating continuous verification and attestation 

throughout their lifecycle. This approach assumes potential compromise at any point, 

enforcing strict authentication, least-privilege access, and micro-segmentation for all 

interactions, regardless of origin. Before deployment or runtime execution, artifacts must 

undergo rigorous checks, including provenance validation, integrity signing, and adversarial 

testing to detect hidden threats like backdoors. 

 Zero trust extends traditional network defenses to AI-specific risks by implementing 

dynamic policies that verify user behavior, device posture, and data flows in real time. 

Techniques such as differential privacy for datasets and secure enclaves for model execution 

further limit exposure, while comprehensive logging supports anomaly detection. This 

paradigm shifts from perimeter-based trust to perpetual validation, significantly reducing 

the attack surface in distributed AI environments. 
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 Embracing zero trust for AI fosters resilience against sophisticated threats, ensuring 

that only verified, tamper-evident artifacts are utilized, thereby enhancing overall system 

trustworthiness and operational security. 

 

CONCLUSION 

The rapid evolution of artificial intelligence has introduced unprecedented opportunities 

alongside complex supply chain vulnerabilities that extend far beyond traditional software 

risks. This paper has examined the unique challenges posed by AI artifacts—models, 

datasets, training environments, and dependencies—and proposed a comprehensive 

framework for securing the AI supply chain through enhanced transparency, provenance 

tracking, and risk management practices. By extending established mechanisms such as 

Software Bills of Materials (SBOMs) to AI-specific components, integrating rigorous 

verification into MLOps pipelines, aligning with global governance frameworks, and adopting 

zero-trust principles, organizations can systematically mitigate threats like data poisoning, 

model theft, and adversarial manipulation. These measures collectively shift the paradigm 

from reactive incident response to proactive, lifecycle-wide assurance, fostering greater 

confidence in AI deployments across critical sectors. 

 Operationalizing secure AI supply chains demands concerted action from multiple 

stakeholders. Industry collaboration on standardized AI SBOM specifications, supported by 

open-source communities and standards bodies, is essential to achieve interoperability and 

widespread adoption. Simultaneously, policymakers must continue refining regulatory 

frameworks—building on initiatives such as the NIST AI Risk Management Framework and 

Executive Order 14028—to provide clear guidance while encouraging innovation. 

Organizations, in turn, bear responsibility for embedding security practices into their 

development cultures, investing in automated tools, and cultivating expertise in AI-specific 

risk assessment. Only through this multi-faceted cooperation can the ecosystem balance the 

transformative potential of AI with robust safeguards against emerging threats. 

 Securing the AI supply chain is not merely a technical imperative but a foundational 

requirement for trustworthy artificial intelligence. As AI systems become increasingly 

embedded in societal infrastructure, the integrity and resilience of their supply chains will 

directly influence economic competitiveness, national security, and public trust. 

Implementing the recommendations outlined in this paper will allow stakeholders to lay the 

groundwork for a future in which AI innovation proceeds responsibly, transparently, and 

securely, ensuring that its benefits are realized without compromising safety or ethical 

standards. Continued research, practical implementation, and adaptive governance will be 

vital to address evolving challenges in this dynamic landscape. 
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