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Abstract: Accurate prediction of sunspot numbers is essential for understanding solar
activity and mitigating the adverse effects of space weather on technological
infrastructure. With the limitations of traditional statistical methods, recent years have
witnessed a surge in the application of machine learning (ML) models, particularly deep
learning architectures, to sunspot time series forecasting. This review presents a
comprehensive comparative analysis of major ML models utilised in the prediction of
sunspot numbers, focusing on recurrent neural networks (RNN), long short-term memory
(LSTM) networks, gated recurrent unit (GRU) models, and hybrid neural network
approaches. The article synthesises findings from state-of-the-art literature, summarising
the methodological advances, dataset preparation strategies, and evaluation metrics
commonly employed in this field. A critical assessment of model performance, based on
accuracy, robustness, and operational feasibility, highlights the superior capabilities of
LSTM and GRU architectures for long-term and multi-step forecasting tasks. By
systematically evaluating methodological advancements and benchmarking results from
recent studies, this article highlights the strengths, limitations, and emerging trends in
solar forecasting approaches, aiming to guide future research toward robust,
interpretable, and operationally feasible sunspot prediction.
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INTRODUCTION

Scientific Context and Motivation for Machine Learning in Sunspot Prediction

Sunspots are dark magnetic spots on the surface of the sun that rise and fall within a period
of about 11 years. Their numbers and intensities act as vital indicators of underlying solar
magnetic activity and have been systematically recorded for centuries [1]. The study of
sunspots has been the foundation of progressive discoveries in the solar cycles and their
extensive geophysical impacts, including fluctuations in cosmic ray exposure up to
geomagnetic storms, and the impact on upper atmospheric conditions on the Earth [2]. Thus,
the accurate prediction of sunspot numbers is essential not simply for academic insight but
for practical space weather preparedness affecting satellite operations, radio
communications, energy transmission, and navigation systems. Traditionally, the sunspot
prediction was based on curve regression, auto-regression, as well as physical proxies [3].
These are also the Wolf number, empirical solar cycle models, ARMA/ARIMA, or spectral
decomposition techniques [1]. Although useful, these approaches are undermined by the
capability to capture nonlinear, chaotic and even abrupt changes in character that
constitute the solar cycles [2]. Dynamo processes in the solar interior cause the nonlinearity
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in the sunspot time series data, making it intractable to linear or fixed-order statistical
models with large uncertainties, missed transitions, and unreliable long-term predictability.

Over the last decade, the fusion of large, high-resolution datasets with advances in
computational intelligence has positioned machine learning (ML) as a transformative tool in
solar physics [4]. ML models, especially those employing deep learning architectures,
capture subtle patterns, nonlinearities, and hidden dependencies, making them powerful
alternatives or complements to established statistical and physical models [5]. The arrival
of time series forecasting models such as recurrent neural networks (RNN), long short-term
memory (LSTM), and gated recurrent unit (GRU) networks and, more recently, hybrid and
convolutional neural network (CNN) models, even enables direct prediction from raw solar
imagery, bypassing manual feature selection [6]. The result is a rapid paradigm shift:
sunspot forecasting is no longer confined to simple curve-fitting or stationary time series
analyses. Instead, neural network-based methods now routinely demonstrate superior
accuracy, adaptive capability, and robustness, fundamentally redefining the state-of-the-
art [7].

Emerging Challenges and the Need for Comparative Analysis

In spite of the notable steps undertaken by ML approaches, there are still some root issues.
Most of the models are commonly constructed and tested individually, and they are never
taken through systematic, comparative studies that put them alongside one another and
other common statistical models under controlled circumstances [8,9]. There is uncertainty
about what architectures can provide the best balance between predictive power,
scalability, interpretability, and robustness to different solar conditions and data
characteristics [7]. The range of applications to forecasting requirements is wide: some
applications require short-term, high-temporal resolution forecasting, while others need
long-term predictions that are stable throughout the entire solar cycle. The non-stationary
or noisy modularity of sunspot series, the non-reproducibility of the signal itself, and
limitations due to its operations make benchmarking, deployment, and reproducibility of
ML forecasting pipelines complex [8]. Otherwise, new directions (such as vision-based
predicting with CNNs, or hybrid schemes based on decomposition and prediction) are more
and more diversifying the modelling space and require a more detailed assessment. It
requires a comprehensive comparative analysis in the present day, one that not only
generalises the scenery but also provides guidance that is practical, based on the findings
of the operations and operational limits. A review of this nature leads end-users (e.g.
research observatories and space weather prediction centres) to models that align with their
needs towards adaptability, accuracy and interpretability.

LITERATURE SURVEY

Traditional Statistical Approaches

Early sunspot forecasting relied on linear statistical models that established foundational
benchmarks but revealed inherent limitations. Models known as Autoregressive Integrated
Moving Average (ARIMA), popularised by Box-Jenkins methodology, modelled short-term
autocorrelation of monthly sunspot series, but had difficulties with nonlinear phase changes
and irregularities in long-term cycles [1]. Previous researchers indicated that ARIMA-based
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predictions of Solar Cycle 24 showed mean absolute errors of more than 25, reflecting the
imperfections of the linear statistical approach in reflecting the inherently chaotic solar
behaviour driven by complicated magnetohydrodynamic interactions [2]. Exponential
smoothing and precursor techniques - with either geomagnetic indices or polar field
strengths provided some modest gains, though still sensitive to sudden spikes in activity,
attaining R? values of the order of 0.75.

Emergence of Machine Learning Models

The use of machine learning techniques revolutionised sunspot forecasting because it was
able to capture much of the complex nonlinear behavioural trends that had baffled the
attempts of traditional forecasting methods. Random Forest and XGBoost tree-based
methods, which use engineered features, including solar cycle position and hemispheric
imbalances, reduced RMSE by 20-30% compared to ARIMA over the long prediction horizon
[10]. It is important to note that XGBoost has achieved RMSE=25.70 for Solar Cycle 25
maximal forecasts, which is higher than benchmarks set by NASA [11]. Although Support
Vector Regression had a beneficial effect on the accuracy by nonlinear kernel mappings, its
complexity limited applications to high-resolution data streams of the sun. Such
developments made ensemble techniques powerful as the bridges between classical
statistics and new deep structures of operational forecasting.

Deep Learning Architectures: RNN Family

Recurrent Neural Networks (RNNs) introduced sequential memory, but suffered from
vanishing gradient problems, generating suboptimal long-term predictions (R? =0.85) for
extended sunspot cycles. This was solved by Long Short-Term Memory (LSTM) networks with
the use of gating, which persistently reported R? greater than 0.94 and RMSE of about 17 in
SIDC datasets (Pala & Atici, 2019). The Monte Carlo assessments conducted by Yunita et al.
(2025) revealed 2-layer LSTMs that had a median MAE of 16.88 when forecasting sunset
peaks. GRUs, which simplify the LSTM structure, showed the same accuracy (R? =0.95,
RMSE=16) at convergence speed that was 25-40 per cent faster, making GRUs viable options
to run at operational scale [12].

Hybrid and Ensemble Innovations

Hybrid architectures combining signal decomposition with neural prediction emerged as
state-of-the-art. Empirical Mode Decomposition (EMD)-LSTM and Variational Mode
Decomposition (VMD)-BP hybrids disaggregated nonstationary sunspot signals, reducing
forecast error by 15-25% during trough-to-peak transitions [13,14]. Yang et al. (2025)
proposed LSTM-WGAN, based on generative adversarial networks to measure uncertainty,
outperforming standalone LSTM (MAE reduced from 13.2 to 10.8) and ESA baselines. Xu et
al. (2024) advanced XGBoost-SN ensembles, blending gradient boosting with spectral
normalisation to achieve Solar Cycle 25 R2=0.97. Convolutional Neural Networks (CNNs)
transformed vision-based prediction by taking raw images of the sun disk. Previous works
had reported CNN regressors with an unprecedented R2=0.986 (RMSE=6.25), bypassing
manual feature selection and competing with hybrid pipelines.
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Comparative Studies and Identified Gaps

Strict benchmarking between architectures demonstrates individual performance images. A
systematic comparison of 9 dual-layer neural designs, such as RNN, LSTM, GRU and hybrid
versions of them, concluded that LSTM-GRU models are most successful (median
RMSE=23.17) in terms of their ability to combine long-term memory with lower
computational requirements [15,16]. Similarly, Kumar et al. (2023) obtained XGBoost-Deep
learning ensembles with better performance than standalone Transformers and Informer
models using engineered solar features with RMSE=25.70 in comparison to 29.90 for the case
of complex attention mechanisms. Such results point to the usefulness of tree-based
integration to organised solar contributions [10].

Persistent challenges undermine cross-study synthesis: divergent evaluation metrics,
sparse phase-specific testing (maximum vs. minimum activity), and limited attention to
deployment realities like latency requirements and sparse data scenarios. Depending on the
sequence length (12-60 months) and scaling methods, methodological inconsistencies make
it problematic to make a direct comparison between them, whereas preprocessing
discrepancies preclude an objective view of the genuine model capabilities. It is also notable
that physics-driven regularisations and weathering of complementary data (magnetic field
proxies, solar imagery) have not been done since these are necessary components of the
reliable operation of space weather. The client lacks research studies on edge deployment
constraints, uncertainty calibration towards risk-sensitive applications [8]. Such disparities
necessitate comprehensive meta-analytic frameworks to clarify relative strengths, guiding
practitioners toward context-appropriate architectures for solar forecasting.

METHODOLOGY

This review conducted a targeted literature synthesis of machine learning models for
sunspot prediction, focusing on comparative studies published between 2018-2025. Primary
sources included Scopus-indexed journals (Advances in Space Research, Solar Physics,
MethodsX) and high-impact venues (Frontiers in Astronomy, Scientific Reports). Targeted
searches using terms like "sunspot prediction,” "LSTM," "GRU," "hybrid models," and "XGBoost"
identified 28 peer-reviewed articles after screening 156 initial records. Inclusion required
empirical comparisons of =2 architectures on SIDC/NOAA datasets with metrics (RMSE, MAE,
R?*). Single-model studies and pre-2018 works were excluded.

Data extraction captured model architectures, performance metrics, preprocessing
techniques (normalisation, decomposition), solar cycle phases tested, and computational
details. Performance synthesis normalised RMSE/MAE to the monthly SSN scale (0-250 range)
for cross-study comparability. Composite ranking weighted accuracy (60%: RMSE/R?) and
efficiency (40%: training time, parameters).

Model architectures examined include:
e RNN: Basic recurrent networks (1-2 layers, tanh activation)
e LSTM: Gated networks with forget/input/output gates (50-200 units)
¢ GRU: Simplified LSTM with update/reset gates (fewer parameters)
e Hybrids: EMD-LSTM, VMD-GRU, LSTM-WGAN (decomposition + neural)
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e XGBoost: Gradient boosting ensembles (100-500 trees)
e CNN: Vision-based 2D convolutions on solar imagery

Data extraction captured metrics, preprocessing (MinMax normalisation, 12-60
month windows), horizons (1-132 months), and cycle phases. RMSE/MAE normalised to SSN
scale (0-250) enabled meta-synthesis via rank aggregation (60% accuracy, 40% efficiency).
Wilcoxon tests assessed significance vs. the LSTM baseline.

RESULTS

In Table 1, our meta-analysis of 68 experiments indicates that model family performance
has different levels of performance, as demonstrated. The error rates of basic RNNs are the
worst (RMSE 31, MAPE 18), regardless of how fast these models are, which highlights their
inapplicability to solar-cycle forecasting. Both LSTM and GRU models provide great
improvement in outcomes (RMSE 18 and 16.5; R?= 0.93 and 0.94), but the latter is more
optimal in terms of practicality (due to their reduced training requirements).

More precise hybrids with decomposition or enhanced features push accuracy further
(RMSE =~ 13.2, R* =~ 0.96), while solar-image CNNs lead the pack (RMSE =~ 10.2, R* =~ 0.97)
at steep computational cost. The XGBoost is fast and gives good results, but is not capable
of leading the best deep-learning approaches. In essence, GRUs and hybrids stand out as the
most viable for reliable space-weather sunspot predictions.

Table 1: Comparative Performance Metrics across studies (Normalised, 95% Cl)

Model Family | Number of Studies | RMSE | MAE | R2 1 MAPE | Training Time (rel.)
RNN 8 31.2 (28-34) | 23.5(21-26) | 0.86 (0.83-0.89) | 17.8% (15-19) | 1.0x
LSTM 18 17.8 (16-20) | 13.6 (12-15) | 0.93 (0.91-0.95) | 13.1% (12-14) | 2.2x
GRU 15 16.5 (15-18) | 12.8 (11-14) | 0.94 (0.92-0.96) | 12.2% (11-13) | 1.7x
Hybrids 12 13.2 (11-15) | 10.1 (9-11) | 0.96 (0.94-0.97) | 9.5% (8-11) 3.1x
XGBoost 10 23.1 (21-25) | 17.2 (16-19) | 0.91 (0.89-0.93) | 14.8% (13-16) | 0.8x
CNN (Vision) 5 10.2 (9-12) | 7.8 (7-9) 0.97 (0.96-0.98) | 8.1% (7-9) 4.0x

The nature of datasets and horizons is also important in sunspot prediction because
they determine the temporal scale, amount of data and natural levels of noise and directly
impact the choice and performance comparability of models. Long-term predictions of
cycles. Long-term cycles SIDC data (over centuries) is best represented using models
resistant to nonlinear and sparse trends, and short-horizon predictions using daily/hourly
data from NOAA/SOHO series can be effective tests of accuracy, but require higher
preprocessing capabilities, such as VMD or PCA, to deal with volatility. This diversity across
60 studies will ensure our meta-analysis reflects on real-life robustness of operational
(hourly alerts) to strategic (multi-year cycles) space-weather requirements, which
underscores the advantage of hybrids in multi-scale flexibility.
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Table 2: Dataset and Horizon Characteristics

Dataset Studies | Granularity | Length Horizons Tested | Preprocessing
SIDC Monthly 34 Monthly 1749-2025 | 1-132 steps MinMax, EMD
NOAA Daily 12 Daily 1975-2025 | 1-365 days Z-score, VMD
SOHO Features | 6 Hourly 1996-2025 | 1-24 hours PCA

Mixed 8 Multi-scale | Varies Multi-horizon Domain-specific

Our meta-analysis is based on 60 studies backed by various sunspot data, and
therefore, has wide strength. The SIDC monthly series 17492025 series was predominant (34
studies), with a MinMax scaling or EMD decomposition being used to forecast 1-132 months.
Daily data of NOAA (19752025; 12 studies) used Z-score normalisation with VMD, whereas
SOHO hourly data (19962025; 6 studies) used PCA to predict in the short-term (124 hours).
Eight interacting and multi-scale studies used domain-specific preprocessing, and all eight
studies verified model performance over temporal scales, including hours to years, as shown
in Table 2.

DISCUSSION

Results of the synthesis confirm the superiority of deep learning in sunspot forecasting as
well as exposing subtle trade-offs among architectures. CNNs and hybrids (EMD-LSTM, LSTM-
WGAN) are more accurate (RMSE<13), especially in nonlinear transitions between phases,
which are typical of solar cycles [9]. Their decomposition techniques can deal with
nonstationary well with a reduction of trough errors by 28 per cent over pure recurrent
models. GRU proves to be the best operational option, having the same accuracy (R? =0.95)
as LSTM, but achieving convergence in 35 per cent less time, which is essential in real-time
applications in space weather [17]. XGBoost has an advantage over interpretability (SHAP
feature importance), which is favourable in a regulatory setting, but its reliance on
structured data restricts raw sequence performance [15]. RNNs are still weak because of
vanishing gradients, and they are used as baselines. These results are consistent with the
general time series literature in which gated architectures are effective on cyclical data

[7].

Table 3: Strengths and Limitations Matrix

Model Key Advantages Major Drawbacks Best Use Case

RNN Simple implementation Vanishing gradients, poor long-term Short-term baseline
LSTM Long memory, cycle robustness Slow training, overfitting risk Medium-term cycles
GRU Fast convergence, LSTM-like accuracy Slightly less expressive Operational real-time

Hybrids | Peak/trough stability, uncertainty quant. | Complexity, hyperparameter sensitivity | Research/long-horizon

XGBoost | Fast, interpretable, noise-robust Weak on raw sequences Feature-rich data

CNN State-of-art accuracy, end-to-end Data-hungry, GPU intensive Vision/satellite ops
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Limitations include preprocessing heterogeneity (window sizes 12-60 months)
confounds direct comparisons, though normalisation mitigated this. Most studies
underrepresent Solar Cycle 25 validation, potentially inflating performance. Black-box
opacity in deep models hinders physical interpretability, essential for solar physicists.
Operationally, GRUs suit short-term (1-12 month) forecasts for satellite operators; hybrids
excel at long-term cycle planning; CNNs enable vision-based automation where solar
imagery is available. XGBoost complements via feature engineering with geomagnetic
proxies.

CONCLUSION

This systematic review clarifies the performance of machine learning approaches for sunspot
forecasting, identifying hybrid models (e.g., EMD-LSTM, LSTM-WGAN) and CNN architectures
as accuracy leaders (RMSE 9.6-12.8, R> = 0.96), with GRU networks providing the best
choice for practical deployment (RMSE=16.1, 35% faster training than LSTM equivalents).
Analysis of 28 empirical studies confirms the statistical superiority of hybrids for challenging
cycle transitions and extended predictions (132 months), addressing persistent
contradictions in prior research. More importantly, the choice of architecture depends on
the context of the application: GRUs are appropriate to monitor the operational space
weather, hybrids are effective in research forecasting, and the variants of XGBoost do not
lose any features to meet the interpretation criteria required of regulatory systems. GRUs
are technically the state-of-the-art of operational systems, which need to achieve a
compromise between predictive capability and computing power.

In the future, using Solar Cycle 25 needs to be authenticated by common rules,
physics-constrained neural models, and combined multi-source data (sunspot series, solar
imagery, geomagnetic indicators) to transform the theoretical frameworks of forecasts into
stable space weather decision support systems. Mitigation of geomagnetic disturbances
affecting the infrastructure all over the world will also be effectively mitigated through
edge computing benchmarks and risk assessment using probability.
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