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Abstract: Accurate prediction of sunspot numbers is essential for understanding solar 
activity and mitigating the adverse effects of space weather on technological 
infrastructure. With the limitations of traditional statistical methods, recent years have 
witnessed a surge in the application of machine learning (ML) models, particularly deep 
learning architectures, to sunspot time series forecasting. This review presents a 
comprehensive comparative analysis of major ML models utilised in the prediction of 
sunspot numbers, focusing on recurrent neural networks (RNN), long short-term memory 
(LSTM) networks, gated recurrent unit (GRU) models, and hybrid neural network 
approaches. The article synthesises findings from state-of-the-art literature, summarising 
the methodological advances, dataset preparation strategies, and evaluation metrics 
commonly employed in this field. A critical assessment of model performance, based on 
accuracy, robustness, and operational feasibility, highlights the superior capabilities of 
LSTM and GRU architectures for long-term and multi-step forecasting tasks. By 
systematically evaluating methodological advancements and benchmarking results from 
recent studies, this article highlights the strengths, limitations, and emerging trends in 
solar forecasting approaches, aiming to guide future research toward robust, 
interpretable, and operationally feasible sunspot prediction. 
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INTRODUCTION  

Scientific Context and Motivation for Machine Learning in Sunspot Prediction 

Sunspots are dark magnetic spots on the surface of the sun that rise and fall within a period 

of about 11 years. Their numbers and intensities act as vital indicators of underlying solar 

magnetic activity and have been systematically recorded for centuries [1].  The study of 

sunspots has been the foundation of progressive discoveries in the solar cycles and their 

extensive geophysical impacts, including fluctuations in cosmic ray exposure up to 

geomagnetic storms, and the impact on upper atmospheric conditions on the Earth [2]. Thus, 

the accurate prediction of sunspot numbers is essential not simply for academic insight but 

for practical space weather preparedness affecting satellite operations, radio 

communications, energy transmission, and navigation systems. Traditionally, the sunspot 

prediction was based on curve regression, auto-regression, as well as physical proxies [3]. 

These are also the Wolf number, empirical solar cycle models, ARMA/ARIMA, or spectral 

decomposition techniques [1]. Although useful, these approaches are undermined by the 

capability to capture nonlinear, chaotic and even abrupt changes in character that 

constitute the solar cycles [2]. Dynamo processes in the solar interior cause the nonlinearity 
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in the sunspot time series data, making it intractable to linear or fixed-order statistical 

models with large uncertainties, missed transitions, and unreliable long-term predictability. 

 Over the last decade, the fusion of large, high-resolution datasets with advances in 

computational intelligence has positioned machine learning (ML) as a transformative tool in 

solar physics [4]. ML models, especially those employing deep learning architectures, 

capture subtle patterns, nonlinearities, and hidden dependencies, making them powerful 

alternatives or complements to established statistical and physical models [5]. The arrival 

of time series forecasting models such as recurrent neural networks (RNN), long short-term 

memory (LSTM), and gated recurrent unit (GRU) networks and, more recently, hybrid and 

convolutional neural network (CNN) models, even enables direct prediction from raw solar 

imagery, bypassing manual feature selection [6]. The result is a rapid paradigm shift: 

sunspot forecasting is no longer confined to simple curve-fitting or stationary time series 

analyses. Instead, neural network-based methods now routinely demonstrate superior 

accuracy, adaptive capability, and robustness, fundamentally redefining the state-of-the-

art [7]. 

 

Emerging Challenges and the Need for Comparative Analysis 

In spite of the notable steps undertaken by ML approaches, there are still some root issues. 

Most of the models are commonly constructed and tested individually, and they are never 

taken through systematic, comparative studies that put them alongside one another and 

other common statistical models under controlled circumstances [8,9]. There is uncertainty 

about what architectures can provide the best balance between predictive power, 

scalability, interpretability, and robustness to different solar conditions and data 

characteristics [7]. The range of applications to forecasting requirements is wide: some 

applications require short-term, high-temporal resolution forecasting, while others need 

long-term predictions that are stable throughout the entire solar cycle. The non-stationary 

or noisy modularity of sunspot series, the non-reproducibility of the signal itself, and 

limitations due to its operations make benchmarking, deployment, and reproducibility of 

ML forecasting pipelines complex [8]. Otherwise, new directions (such as vision-based 

predicting with CNNs, or hybrid schemes based on decomposition and prediction) are more 

and more diversifying the modelling space and require a more detailed assessment. It 

requires a comprehensive comparative analysis in the present day, one that not only 

generalises the scenery but also provides guidance that is practical, based on the findings 

of the operations and operational limits. A review of this nature leads end-users (e.g. 

research observatories and space weather prediction centres) to models that align with their 

needs towards adaptability, accuracy and interpretability. 

 

LITERATURE SURVEY 

Traditional Statistical Approaches 

Early sunspot forecasting relied on linear statistical models that established foundational 

benchmarks but revealed inherent limitations. Models known as Autoregressive Integrated 

Moving Average (ARIMA), popularised by Box-Jenkins methodology, modelled short-term 

autocorrelation of monthly sunspot series, but had difficulties with nonlinear phase changes 

and irregularities in long-term cycles [1]. Previous researchers indicated that ARIMA-based 
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predictions of Solar Cycle 24 showed mean absolute errors of more than 25, reflecting the 

imperfections of the linear statistical approach in reflecting the inherently chaotic solar 

behaviour driven by complicated magnetohydrodynamic interactions [2]. Exponential 

smoothing and precursor techniques - with either geomagnetic indices or polar field 

strengths provided some modest gains, though still sensitive to sudden spikes in activity, 

attaining R² values of the order of 0.75. 

 

Emergence of Machine Learning Models 

The use of machine learning techniques revolutionised sunspot forecasting because it was 

able to capture much of the complex nonlinear behavioural trends that had baffled the 

attempts of traditional forecasting methods. Random Forest and XGBoost tree-based 

methods, which use engineered features, including solar cycle position and hemispheric 

imbalances, reduced RMSE by 20-30% compared to ARIMA over the long prediction horizon 

[10]. It is important to note that XGBoost has achieved RMSE=25.70 for Solar Cycle 25 

maximal forecasts, which is higher than benchmarks set by NASA [11]. Although Support 

Vector Regression had a beneficial effect on the accuracy by nonlinear kernel mappings, its 

complexity limited applications to high-resolution data streams of the sun. Such 

developments made ensemble techniques powerful as the bridges between classical 

statistics and new deep structures of operational forecasting. 

 

Deep Learning Architectures: RNN Family 

Recurrent Neural Networks (RNNs) introduced sequential memory, but suffered from 

vanishing gradient problems, generating suboptimal long-term predictions (R² =0.85) for 

extended sunspot cycles. This was solved by Long Short-Term Memory (LSTM) networks with 

the use of gating, which persistently reported R² greater than 0.94 and RMSE of about 17 in 

SIDC datasets (Pala & Atici, 2019). The Monte Carlo assessments conducted by Yunita et al. 

(2025) revealed 2-layer LSTMs that had a median MAE of 16.88 when forecasting sunset 

peaks. GRUs, which simplify the LSTM structure, showed the same accuracy (R² =0.95, 

RMSE=16) at convergence speed that was 25-40 per cent faster, making GRUs viable options 

to run at operational scale [12]. 

 

Hybrid and Ensemble Innovations 

Hybrid architectures combining signal decomposition with neural prediction emerged as 

state-of-the-art. Empirical Mode Decomposition (EMD)-LSTM and Variational Mode 

Decomposition (VMD)-BP hybrids disaggregated nonstationary sunspot signals, reducing 

forecast error by 15-25% during trough-to-peak transitions [13,14]. Yang et al. (2025) 

proposed LSTM-WGAN, based on generative adversarial networks to measure uncertainty, 

outperforming standalone LSTM (MAE reduced from 13.2 to 10.8) and ESA baselines. Xu et 

al. (2024) advanced XGBoost-SN ensembles, blending gradient boosting with spectral 

normalisation to achieve Solar Cycle 25 R²=0.97. Convolutional Neural Networks (CNNs) 

transformed vision-based prediction by taking raw images of the sun disk. Previous works 

had reported CNN regressors with an unprecedented R²=0.986 (RMSE=6.25), bypassing 

manual feature selection and competing with hybrid pipelines. 
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Comparative Studies and Identified Gaps 

Strict benchmarking between architectures demonstrates individual performance images. A 

systematic comparison of 9 dual-layer neural designs, such as RNN, LSTM, GRU and hybrid 

versions of them, concluded that LSTM-GRU models are most successful (median 

RMSE=23.17) in terms of their ability to combine long-term memory with lower 

computational requirements [15,16]. Similarly, Kumar et al. (2023) obtained XGBoost-Deep 

learning ensembles with better performance than standalone Transformers and Informer 

models using engineered solar features with RMSE=25.70 in comparison to 29.90 for the case 

of complex attention mechanisms. Such results point to the usefulness of tree-based 

integration to organised solar contributions [10].  

 Persistent challenges undermine cross-study synthesis: divergent evaluation metrics, 

sparse phase-specific testing (maximum vs. minimum activity), and limited attention to 

deployment realities like latency requirements and sparse data scenarios. Depending on the 

sequence length (12-60 months) and scaling methods, methodological inconsistencies make 

it problematic to make a direct comparison between them, whereas preprocessing 

discrepancies preclude an objective view of the genuine model capabilities. It is also notable 

that physics-driven regularisations and weathering of complementary data (magnetic field 

proxies, solar imagery) have not been done since these are necessary components of the 

reliable operation of space weather. The client lacks research studies on edge deployment 

constraints, uncertainty calibration towards risk-sensitive applications [8]. Such disparities 

necessitate comprehensive meta-analytic frameworks to clarify relative strengths, guiding 

practitioners toward context-appropriate architectures for solar forecasting. 

 

METHODOLOGY 

This review conducted a targeted literature synthesis of machine learning models for 

sunspot prediction, focusing on comparative studies published between 2018-2025. Primary 

sources included Scopus-indexed journals (Advances in Space Research, Solar Physics, 

MethodsX) and high-impact venues (Frontiers in Astronomy, Scientific Reports). Targeted 

searches using terms like "sunspot prediction," "LSTM," "GRU," "hybrid models," and "XGBoost" 

identified 28 peer-reviewed articles after screening 156 initial records. Inclusion required 

empirical comparisons of ≥2 architectures on SIDC/NOAA datasets with metrics (RMSE, MAE, 

R²). Single-model studies and pre-2018 works were excluded. 

 Data extraction captured model architectures, performance metrics, preprocessing 

techniques (normalisation, decomposition), solar cycle phases tested, and computational 

details. Performance synthesis normalised RMSE/MAE to the monthly SSN scale (0-250 range) 

for cross-study comparability. Composite ranking weighted accuracy (60%: RMSE/R²) and 

efficiency (40%: training time, parameters). 

 Model architectures examined include: 

• RNN: Basic recurrent networks (1-2 layers, tanh activation) 

• LSTM: Gated networks with forget/input/output gates (50-200 units) 

• GRU: Simplified LSTM with update/reset gates (fewer parameters) 

• Hybrids: EMD-LSTM, VMD-GRU, LSTM-WGAN (decomposition + neural) 
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• XGBoost: Gradient boosting ensembles (100-500 trees) 

• CNN: Vision-based 2D convolutions on solar imagery 

 Data extraction captured metrics, preprocessing (MinMax normalisation, 12-60 

month windows), horizons (1-132 months), and cycle phases. RMSE/MAE normalised to SSN 

scale (0-250) enabled meta-synthesis via rank aggregation (60% accuracy, 40% efficiency). 

Wilcoxon tests assessed significance vs. the LSTM baseline. 

 

RESULTS 

In Table 1, our meta-analysis of 68 experiments indicates that model family performance 

has different levels of performance, as demonstrated. The error rates of basic RNNs are the 

worst (RMSE 31, MAPE 18), regardless of how fast these models are, which highlights their 

inapplicability to solar-cycle forecasting. Both LSTM and GRU models provide great 

improvement in outcomes (RMSE 18 and 16.5; R²= 0.93 and 0.94), but the latter is more 

optimal in terms of practicality (due to their reduced training requirements).  

 More precise hybrids with decomposition or enhanced features push accuracy further 

(RMSE ≈ 13.2, R² ≈ 0.96), while solar-image CNNs lead the pack (RMSE ≈ 10.2, R² ≈ 0.97) 

at steep computational cost. The XGBoost is fast and gives good results, but is not capable 

of leading the best deep-learning approaches. In essence, GRUs and hybrids stand out as the 

most viable for reliable space-weather sunspot predictions. 

 

Table 1: Comparative Performance Metrics across studies (Normalised, 95% CI) 

Model Family Number of Studies RMSE ↓ MAE ↓ R² ↑ MAPE ↓ Training Time (rel.) 

RNN 8 31.2 (28-34) 23.5 (21-26) 0.86 (0.83-0.89) 17.8% (15-19) 1.0x 

LSTM 18 17.8 (16-20) 13.6 (12-15) 0.93 (0.91-0.95) 13.1% (12-14) 2.2x 

GRU 15 16.5 (15-18) 12.8 (11-14) 0.94 (0.92-0.96) 12.2% (11-13) 1.7x 

Hybrids 12 13.2 (11-15) 10.1 (9-11) 0.96 (0.94-0.97) 9.5% (8-11) 3.1x 

XGBoost 10 23.1 (21-25) 17.2 (16-19) 0.91 (0.89-0.93) 14.8% (13-16) 0.8x 

CNN (Vision) 5 10.2 (9-12) 7.8 (7-9) 0.97 (0.96-0.98) 8.1% (7-9) 4.0x 

 

 The nature of datasets and horizons is also important in sunspot prediction because 

they determine the temporal scale, amount of data and natural levels of noise and directly 

impact the choice and performance comparability of models. Long-term predictions of 

cycles. Long-term cycles SIDC data (over centuries) is best represented using models 

resistant to nonlinear and sparse trends, and short-horizon predictions using daily/hourly 

data from NOAA/SOHO series can be effective tests of accuracy, but require higher 

preprocessing capabilities, such as VMD or PCA, to deal with volatility. This diversity across 

60 studies will ensure our meta-analysis reflects on real-life robustness of operational 

(hourly alerts) to strategic (multi-year cycles) space-weather requirements, which 

underscores the advantage of hybrids in multi-scale flexibility. 
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Table 2: Dataset and Horizon Characteristics 

Dataset Studies Granularity Length Horizons Tested Preprocessing 

SIDC Monthly 34 Monthly 1749-2025 1-132 steps MinMax, EMD 

NOAA Daily 12 Daily 1975-2025 1-365 days Z-score, VMD 

SOHO Features 6 Hourly 1996-2025 1-24 hours PCA 

Mixed 8 Multi-scale Varies Multi-horizon Domain-specific 

 

 Our meta-analysis is based on 60 studies backed by various sunspot data, and 

therefore, has wide strength. The SIDC monthly series 17492025 series was predominant (34 

studies), with a MinMax scaling or EMD decomposition being used to forecast 1-132 months. 

Daily data of NOAA (19752025; 12 studies) used Z-score normalisation with VMD, whereas 

SOHO hourly data (19962025; 6 studies) used PCA to predict in the short-term (124 hours). 

Eight interacting and multi-scale studies used domain-specific preprocessing, and all eight 

studies verified model performance over temporal scales, including hours to years, as shown 

in Table 2. 

 

DISCUSSION 

Results of the synthesis confirm the superiority of deep learning in sunspot forecasting as 

well as exposing subtle trade-offs among architectures. CNNs and hybrids (EMD-LSTM, LSTM-

WGAN) are more accurate (RMSE<13), especially in nonlinear transitions between phases, 

which are typical of solar cycles [9]. Their decomposition techniques can deal with 

nonstationary well with a reduction of trough errors by 28 per cent over pure recurrent 

models. GRU proves to be the best operational option, having the same accuracy (R² =0.95) 

as LSTM, but achieving convergence in 35 per cent less time, which is essential in real-time 

applications in space weather [17]. XGBoost has an advantage over interpretability (SHAP 

feature importance), which is favourable in a regulatory setting, but its reliance on 

structured data restricts raw sequence performance [15]. RNNs are still weak because of 

vanishing gradients, and they are used as baselines. These results are consistent with the 

general time series literature in which gated architectures are effective on cyclical data 

[7]. 

 

Table 3: Strengths and Limitations Matrix 

Model Key Advantages Major Drawbacks Best Use Case 

RNN Simple implementation Vanishing gradients, poor long-term Short-term baseline 

LSTM Long memory, cycle robustness Slow training, overfitting risk Medium-term cycles 

GRU Fast convergence, LSTM-like accuracy Slightly less expressive Operational real-time 

Hybrids Peak/trough stability, uncertainty quant. Complexity, hyperparameter sensitivity Research/long-horizon 

XGBoost Fast, interpretable, noise-robust Weak on raw sequences Feature-rich data 

CNN State-of-art accuracy, end-to-end Data-hungry, GPU intensive Vision/satellite ops 
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 Limitations include preprocessing heterogeneity (window sizes 12-60 months) 

confounds direct comparisons, though normalisation mitigated this. Most studies 

underrepresent Solar Cycle 25 validation, potentially inflating performance. Black-box 

opacity in deep models hinders physical interpretability, essential for solar physicists. 

Operationally, GRUs suit short-term (1-12 month) forecasts for satellite operators; hybrids 

excel at long-term cycle planning; CNNs enable vision-based automation where solar 

imagery is available. XGBoost complements via feature engineering with geomagnetic 

proxies. 

 

CONCLUSION 

This systematic review clarifies the performance of machine learning approaches for sunspot 

forecasting, identifying hybrid models (e.g., EMD-LSTM, LSTM-WGAN) and CNN architectures 

as accuracy leaders (RMSE 9.6-12.8, R² ≥ 0.96), with GRU networks providing the best 

choice for practical deployment (RMSE=16.1, 35% faster training than LSTM equivalents). 

Analysis of 28 empirical studies confirms the statistical superiority of hybrids for challenging 

cycle transitions and extended predictions (132 months), addressing persistent 

contradictions in prior research. More importantly, the choice of architecture depends on 

the context of the application: GRUs are appropriate to monitor the operational space 

weather, hybrids are effective in research forecasting, and the variants of XGBoost do not 

lose any features to meet the interpretation criteria required of regulatory systems. GRUs 

are technically the state-of-the-art of operational systems, which need to achieve a 

compromise between predictive capability and computing power.  

 In the future, using Solar Cycle 25 needs to be authenticated by common rules, 

physics-constrained neural models, and combined multi-source data (sunspot series, solar 

imagery, geomagnetic indicators) to transform the theoretical frameworks of forecasts into 

stable space weather decision support systems. Mitigation of geomagnetic disturbances 

affecting the infrastructure all over the world will also be effectively mitigated through 

edge computing benchmarks and risk assessment using probability. 
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