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ABSTRACT   

This paper involves the use of Rayleigh-Ritz finite element method to determine the temperature 

distribution in a nuclear fuel element consisting of a sphere of fissionable material and a spherical shell 

of aluminum cladding. The differential equation is a one – dimensional second order differential 

problem. The finite solutions obtained when compared with the exact solutions shows that the accuracy 

increases as the number of elements increases with decrease in error, and this was shown graphically. It 

can be stated that finite element method is an accurate method for determining the temperature 

distribution in a nuclear fuel element consisting of a sphere of fissionable material and a spherical shell 

of aluminum cladding. 

Keywords: Rayleigh – Ritz Finite Element method, temperature distribution, nuclear fuel, aluminum 

cladding. 

1 Introduction 

A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding 

having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so 

that the metal barrier forms a shield between the substrate and a nuclear fuel material held within the 

cladding. 

A number of researchers have used finite element and other method to study temperature distribution. 

In recent times, the heat generation due to fission within a nuclear fuel rod is not uniform and for a 

cylindrical fuel rod, the heat generation is given by [1]. The fuel elements are usually long cylindrical rod 

or rectangular plates of uranium (or thorium) enclosed by cladding. The uranium may be in the pure 

metallic form, in the form of a compound such as uranium dioxide UO2 or in the form of an alloy with 

another metal such as aluminum or zirconium in [2]. Reference [3] analyzed the temperatures and 

cooling rate that arises during welding. [4] determined temperature distribution on cutting tool in end-

milling. ABACUS software based on finite element method was used to study the temperature and heat 
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flux changes in a nuclear fuel rod by [5]. Reference [6] proposes to analyze in-pile fission gas release 

from UO2 fuel. The finite element model describes fission gas transfer from the grain interior to grain 

boundaries by simultaneous mechanisms of diffusive flow and boundary sweeping considering the 

effect of irradiation induced resolution when gas amount in grain. [7] used finite element method to 

determine the temperature distribution on TRISO fuel kernel. In [8] finite element is used to analyze the 

thermo-structural behaviour of cladding process. Reference [9] used finite element method to solve the 

problem of stress distribution in a cylindrical nuclear fuel element with a graphite matrix and spherical 

inclusions. The governing one-dimensional equation for heat transfer in the nuclear fuel element of a 

fissionable material and aluminum cladding is given in [10]. 

It is obvious that a number of researchers seem not to have analyzed the temperature distribution in a 

nuclear fuel element of a spherical form consisting of a sphere of fissionable material surrounded by a 

spherical shell of aluminum cladding. Hence, this paper using finite element analysis tends to fill this 

gap. 

2 Methodology 

2.1 Problem 

Consider a nuclear fuel element of spherical form, consisting of a sphere of “fissionable material 

surrounded by a spherical shell of aluminum “cladding” as shown in the figure below. Nuclear fission is a 

source of thermal energy, which varies non-uniformly from the center of the sphere to the interface of 

the fuel element and the cladding. We wish to determine the temperature distribution in the nuclear 

fuel element and the aluminum cladding. 

The governing equations for the two regions are the same, with the exception that there is no heat 

source term for the aluminum cladding. We have  
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Where subscript 1 and 2 refer to the nuclear fuel element and cladding, respectively. The heat 

generation in the nuclear fuel element is assumed to be of the form  
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Where 0q and c are constants depending on the nuclear material. The boundary conditions are; 

2 1 0       0
dT

kr at r
dr

       (4) 

1 2 , 2 0                    f cT T at r R and T T at r R               (5) 
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Use eight linear elements to determine the finite element solution for the temperature distribution and 

compare the nodal temperature with the exact solution. 
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Figure 1: A nuclear fuel elements of spherical form 

2.2 Solution 

Using Rayleigh – Ritz Finite Element method. 

Since the problem is a two in one problem, we consider both governing equations separately; 

Considering the governing equation of the fissionable material and putting it in residual form as shown 

below; 
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d dT
r k q r

dr dr

 
  

 
              (8)  

 we develop the weak form by multiplying through by the weight function (w), equate to zero and then 

integrate over the whole area. This gives rise to the equation below;    
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The general weak form for this fissionable material is therefore written as; 
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Considering the governing equation of the Aluminum Cladding and putting it in residual form as shown 

below; 
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we develop the weak form by multiplying through by the weight function (w), equate to zero and then 

integrate over the whole area. This gives rise to the equation below; 
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Where (ra, h+ra) is the domain of the element along its radius. 

Since there is no heat loss, the weak form for the Aluminum Cladding is therefore written as; 
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The approximate solution is of the form; 
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2.2.1 For the Fissionable material 

Substituting equation (14) into the weak form of the fissionable material, and

w for  (for 1 to 3)i  , we have; 

3 3
2 2

1 1

1 1

0 ( )
a

a

h r
e e ei i

i i j
r

j j

d d
r k T q r dr Q r

dr dr

 
 



 

  
     

  
     (16) 

The above can be written in the form; 

1

n
e e

ij j i i

j

k w f Q


       (17) 

The finite element model can therefore be represented as; 
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Where                                               
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And                                                                
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2.2.2 For Aluminium Cladding; 

Substituting equation (14) into the weak form of the aluminium cladding, and 

w for  (for 1 to 3)i  , we have; 
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The above can be written in the form; 
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The finite element model can therefore be represented as; 
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Evaluating the coefficient matrix using MathCAD software, results are obtained for 1 2  k and k  .The 

matrix obtained is thus; 
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Where we have k , we substitute into it, 1 2  k and k  which are used in solving the equations of 

fissionable material and aluminum cladding respectively. 

2.3 Assembly of the Matrix Using Eight Elements 

Next, we assemble the matrix using eight elements with four elements each for the fissionable material 

and Aluminium Cladding, since they both share the same centre, thereafter; we mesh the elements to 

get a 17 17 matrix. 

An illustration using one element each is shown below; 

For fissionable material; 
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For Aluminium Cladding; 
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  From boundary condition,  
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The mesh becomes; 
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The eight element mesh follows the same procedure. 

3 Results 

The results obtained from the finite element method are compared to that of the exact solutions. 

Assuming that; 
3
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Four elements each are used for the fissionable material and the aluminum cladding. The fourth 

element of the fissionable material is merged with the first element of the aluminum cladding material 
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to get a total of eight elements. The finite solution is determined after the boundary conditions have 

been applied. The results are shown in the table below; 

Table 1: Values of Exact and Finite Element Method Solutions for Temperatures of Nuclear Fuel for Eight 
Elements 

RADIUS FEA SOLUTIONS EXACT SOLUTIONS ERROR PERCENTAGE 

ERROR (%) 

ACCURACY 

(%) 

0 42.9813 33.14464342 0.22885898 22.885898 77.114102 

1 41.7413 33.06757595 0.20779717 20.779717 79.220283 

2 40.9013 32.83464276 0.19722251 19.722251 80.277749 

3 40.3169 32.44065154 0.19535848 19.535848 80.464152 

4 39.1347 31.87694841 0.18545566 18.545565 81.454435 

5 38.0828 31.13141797 0.18253338 18.253338 81.746662 

6 36.3864 30.18848327 0.17033608 17.033608 82.966392 

7 34.8207 29.0291058 0.16632619 16.632619 83.367381 

8 32.5991 27.63078551 0.15240649 15.240649 84.759351 

9 29.8015 25.93505539 0.12973993 12.973993 87.026007 

10 27.5597 24.5784713 0.10817348 10.817348 89.182652 

11 25.7278 23.46853887 0.08781400 08.781400 91.218600 

12 24.1999 22.54359517 0.06844263 06.844263 93.155737 

13 22.9080 21.76095050 0.05007201 05.007201 94.992799 

14 21.8000 21.09011222 0.03256366 03.256366 96.743634 

15 20.8401 20.50871903 0.01590112 01.590112 98.409888 

16 20.0000 20.00000000 0.00000000 00.000000 100.000000 

 

 

Figure 2: Graph of Temperature against Radial Distance for FEA and Exact Solutions 

4 Discussion 

The Finite Element solutions obtained in the problem can be used to determine the distribution of 

temperature distribution in a nuclear fuel element consisting of a sphere of fissionable material and a 

spherical shell of aluminum cladding. This is as a result of substituting the appropriate values of the 

domains and boundary conditions into the formulated coefficient matrix equations. The results are 

represented in the table, and it shows that there is increase in accuracy as the number of element 
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increases with decrease in error. The graph of the finite element solutions and the exact solutions has 

separate paths but converges at a point. 

5 Conclusion 

The results shows that finite element method is a more reliable and accurate method for determining 

the temperature distribution in a nuclear fuel element consisting of a sphere of fissionable material and 

a spherical shell of aluminum cladding successfully. 
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