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ABSTRACT   

In recent times, the adaptation of evolutionary optimization algorithms for obtaining optimal solutions of 
many classical problems is gaining popularity. To accurately solve stiff systems in Ordinary Differential 
Equation (ODEs), the use of more accurate numerical techniques is of great importance. In this paper, 
optimal approximate solutions of initial--valued stiff system of ODEs are obtained by converting the ODE 
into constrained optimization problem. The latter is then solved via differential evolution algorithm. To 
illustrate the efficiency of the proposed approach, two numerical examples were considered. This 
approach showed significant improvement on the accuracy of the results produced compared with 
existing methods discussed in literature. 

Keywords: Ordinary Differential Equation; Initial Value Problems; Stiff System; Optimization; Differential 
Evolution. 

1 Introduction  
Initial value problems involving systems of first–order ordinary differential equation are often 
encountered in many fields. Most of these systems exhibit a phenomenon known as stiffness.  

Definition 1.1 The linear system 𝒙̇𝒙 = 𝐴𝐴𝒙𝒙 + 𝝓𝝓(𝑡𝑡)  is said to be stiff if  R𝑒𝑒  𝜆𝜆𝑖𝑖 < 0 , 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚,  and  
max𝑖𝑖=1,2,⋯,𝑚𝑚|R𝑒𝑒  𝜆𝜆𝑖𝑖| >> min𝑖𝑖=1,2,⋯,𝑚𝑚|R𝑒𝑒  𝜆𝜆𝑖𝑖|,     where 𝜆𝜆𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚 are the eigenvalues of 𝐴𝐴. The 
ratio is called the stiffness ratio. [15]  

                            � max
𝑖𝑖=1,2,⋯,𝑚𝑚

|R𝑒𝑒  𝜆𝜆𝑖𝑖|� : � min
𝑖𝑖=1,2,⋯,𝑚𝑚

|R𝑒𝑒  𝜆𝜆𝑖𝑖|� (1) 

Such systems are always very difficult to solve when using classical techniques [9]. The difficulty of solving 
stiff initial value problems was clearly identified in early 1950s when the authors in [9] published one of 
the first papers in which the problem of stiffness was stated. Subsequently, a whole lot of methods and 
algorithms have been proposed for solving problems that exhibit stiffness. The author in [6] introduced a 
class of extended backward differentiation formulae suitable for the integration of stiff systems of 
autonomous initial value problems. In a later work, [8], the author proposed classes of predictor-corrector 
method involving the second derivative using the extended backward differentiation formulae. Obtaining 
the solution of stiff differential equations using exponentially fitted formula was first proposed by the 
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authors in [16]. Following the work of the authors in [16], several method based on the concept of 
exponential fitting have been proposed by various authors [1, 3, 6, 7, 8, 10, 12, 19, 20].  

In recent years however, interest in the application of evolutionary algorithm for solving many problems 
is on the increase. Evolutionary algorithm has also been adopted in solving ODE and its application to real 
life problems is on the increase. Problems in ordinary differential equations are converted to optimization 
problems and then solved using optimization techniques. In this direction, the classical genetic algorithm 
was used to obtain approximate solutions of second–order initial value problems by the authors in [11]. 
The author in [18] computed approximate solutions of first–order initial value problem via the 
combination of collocation method (finite elements) and genetic algorithms. The combination of genetic 
algorithm with the Nelder-Mead method for solving the second–order initial value problem of the form 
𝑢𝑢′′ = 𝑓𝑓(𝑥𝑥,𝑦𝑦) was proposed in [17]. The use of neural network for the approximate solution of second–
order initial value problems was proposed by the authors in [14]. In the work of the authors in [21], the 
use of continuous genetic algorithm in obtaining the solution of the two-point second-order ordinary 
differential equation was presented. The use of differential evolution algorithm in obtaining approximate 
solution of second–order initial value problem of the form 𝑢𝑢′′ + 𝑝𝑝(𝑡𝑡)𝑢𝑢′ + 𝑞𝑞(𝑡𝑡)𝑦𝑦 = 𝑟𝑟(𝑡𝑡) was proposed by 
the authors in [5]. In [23], approximate solutions of the second-order two-point boundary value problem 
𝑢𝑢′′ = 𝑓𝑓(𝑡𝑡,𝑢𝑢);     𝑢𝑢(𝑎𝑎) = 𝜂𝜂1;   𝑢𝑢(𝑏𝑏) = 𝜂𝜂2  with oscillatory/periodic behaviour was obtained via the 
application of differential evolution algorithm. In this work, we show that the problem of finding 
approximate solution of a stiff system of first–order ordinary differential equation can be converted to an 
optimization problem. The resulting optimization problem is then solved using differential evolution. It is 
assumed that the solution can be approximated by a linear combination of exponential terms. The 
differential evolution algorithm is used to optimize the coefficients of the terms of the solutions. 

2 Differential Evolution Algorithm 
Differential evolution is a simple stochastic function minimizer which details can be found in many 
standard texts. However, we give a brief overview of the algorithm as described in [22]. Formally, let 
𝑓𝑓:ℝ𝑛𝑛 → ℝ be the function to be optimized. The function takes a candidate solution as argument in the 
form of a vector of real numbers and produces a real number as output which indicates the fitness of the 
given candidate solution. The gradient of f is not known. The goal is to find a solution m for which 𝑓𝑓(𝑚𝑚) ≤
𝑓𝑓(𝑝𝑝) for all p in the search-space, which would mean m is the global minimum. Maximization can be 
performed by considering the function ℎ: = −𝑓𝑓 instead. 

Let 𝐱𝐱 ∈ ℝ𝑛𝑛  designate a candidate solution (agent) in the population. The basic differential evolution 
algorithm can then be described as follows:   

Initialize all agents 𝐱𝐱 with random positions in the search-space.  

Until a termination criterion is met (e.g. number of iterations performed, or adequate fitness reached), 
repeat the following:   

For each agent 𝐱𝐱 in the population do:   

Pick three agents 𝐚𝐚,𝐛𝐛, and 𝐜𝐜 from the population at random, they must be distinct from each 
other as well as from agent 𝐱𝐱  
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Pick a random index 𝑅𝑅 ∈ {1, … ,𝑛𝑛} (n being the dimensionality of the problem to be optimized).  

Compute the agent's potentially new position 𝐲𝐲 = [𝑦𝑦1, … ,𝑦𝑦𝑛𝑛] as follows:   

For each i, pick a uniformly distributed number 𝑟𝑟𝑖𝑖 ≡ 𝑈𝑈(0,1)  

If 𝑟𝑟𝑖𝑖 < CR or 𝑖𝑖 = 𝑅𝑅 then set 𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝐹𝐹(𝑏𝑏𝑖𝑖 − 𝑐𝑐𝑖𝑖) otherwise set 𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖   

(In essence, the new position is outcome of binary crossover of agent 𝐱𝐱 with intermediate agent 𝐳𝐳 = 𝐚𝐚 +
𝐹𝐹(𝐛𝐛 − 𝐜𝐜).)  

If 𝑓𝑓(𝐲𝐲) < 𝑓𝑓(𝐱𝐱) then replace the agent in the population with the improved candidate solution, 
that is, replace 𝐱𝐱 with 𝐲𝐲 in the population.   

Pick the agent from the population that has the highest fitness or lowest cost and return it as the best 
found candidate solution.  

Note that 𝐹𝐹 ∈ [0,2] is called the differential weight and CR ∈ [0,1] is called the crossover probability, 
both these parameters are selectable by the practitioner along with the population size NP ≥ 4. 

3 Procedure for Proposed Technique 
In this work, we considered the system of r equations  

 
𝑑𝑑𝐮𝐮
𝑑𝑑𝑑𝑑

= 𝐟𝐟(𝑡𝑡,𝑢𝑢1,𝑢𝑢2,⋯ , 𝑢𝑢𝑟𝑟),
𝐮𝐮(𝑡𝑡0) = 𝛈𝛈;     𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏

 (2) 

where 𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑟𝑟]𝑇𝑇, 𝐟𝐟 = [𝑓𝑓1,𝑓𝑓2,⋯ ,𝑓𝑓𝑟𝑟]𝑇𝑇, 𝛈𝛈 = [𝜂𝜂1,𝜂𝜂2,⋯ , 𝜂𝜂𝑟𝑟]𝑇𝑇. It is assumed that the solution 𝐮𝐮(𝑡𝑡) 
of (2) can be written as  

 𝐮𝐮(𝑡𝑡) =

⎝

⎜
⎛

𝛼𝛼1,1 𝛼𝛼1,2 ⋯ 𝛼𝛼1,𝑟𝑟
𝛼𝛼2,1 𝛼𝛼2,2 ⋯ 𝛼𝛼2,𝑟𝑟
⋮ ⋱ ⋮
𝛼𝛼𝑟𝑟,1 𝛼𝛼𝑟𝑟,2 ⋯ 𝛼𝛼𝑟𝑟,𝑟𝑟

⎠

⎟
⎞

⎝

⎜
⎛

exp(𝜔𝜔1𝑡𝑡)
exp(𝜔𝜔2𝑡𝑡)
⋮
exp(𝜔𝜔𝑟𝑟𝑡𝑡)

⎠

⎟
⎞

 (3) 

where 𝛼𝛼𝑖𝑖,𝑗𝑗, 𝜔𝜔𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 1,2⋯ , 𝑟𝑟 are real constants which values are to be determined by the proposed 
procedure. 

Substituting the derivative of (3) into (2) gives  

 

⎝

⎜
⎛

𝛼𝛼1,1 𝛼𝛼1,2 ⋯ 𝛼𝛼1,𝑟𝑟
𝛼𝛼2,1 𝛼𝛼2,2 ⋯ 𝛼𝛼2,𝑟𝑟
⋮ ⋱ ⋮
𝛼𝛼𝑟𝑟,1 𝛼𝛼𝑟𝑟,2 ⋯ 𝛼𝛼𝑟𝑟,𝑟𝑟

⎠

⎟
⎞

⎝

⎜
⎛
𝜔𝜔1exp(𝜔𝜔1𝑡𝑡)
𝜔𝜔2exp(𝜔𝜔2𝑡𝑡)
⋮
𝜔𝜔𝑟𝑟exp(𝜔𝜔𝑟𝑟𝑡𝑡)

⎠

⎟
⎞

≈

⎝

⎜
⎛
𝑓𝑓1(𝑡𝑡,𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑟𝑟)
𝑓𝑓2(𝑡𝑡, 𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑟𝑟)
⋮
𝑓𝑓𝑟𝑟(𝑡𝑡,𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑟𝑟)

⎠

⎟
⎞

 (4) 

Using the initial conditions given in (2) we have,  

 𝐮𝐮(𝑡𝑡0) =

⎝

⎜
⎛

𝛼𝛼1,1 𝛼𝛼1,2 ⋯ 𝛼𝛼1,𝑟𝑟
𝛼𝛼2,1 𝛼𝛼2,2 ⋯ 𝛼𝛼2,𝑟𝑟
⋮ ⋱ ⋮
𝛼𝛼𝑟𝑟,1 𝛼𝛼𝑟𝑟,2 ⋯ 𝛼𝛼𝑟𝑟,𝑟𝑟

⎠

⎟
⎞

⎝

⎜
⎛

exp(𝜔𝜔1𝑡𝑡0)
exp(𝜔𝜔2𝑡𝑡0)
⋮
exp(𝜔𝜔𝑟𝑟𝑡𝑡0)

⎠

⎟
⎞

=

⎝

⎜
⎛

𝜂𝜂1
𝜂𝜂2
⋮
𝜂𝜂𝑟𝑟
⎠

⎟
⎞

 (5) 

From (4), the error expression ℰ𝑖𝑖,𝑛𝑛(𝑡𝑡) at each node point 𝑡𝑡𝑛𝑛 is obtained as  
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 ℰ𝑖𝑖,𝑛𝑛(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎡
�
𝛼𝛼𝑖𝑖,1 𝛼𝛼𝑖𝑖,2 ⋯ 𝛼𝛼𝑖𝑖,𝑟𝑟�

⎝

⎜
⎛
𝜔𝜔1exp(𝜔𝜔1𝑡𝑡)
𝜔𝜔2exp(𝜔𝜔2𝑡𝑡)
⋮
𝜔𝜔𝑟𝑟exp(𝜔𝜔𝑟𝑟𝑡𝑡)

⎠

⎟
⎞
− �𝑓𝑓𝑖𝑖(𝑡𝑡,𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑟𝑟)�

⎦
⎥
⎥
⎥
⎤

𝑡𝑡=𝑡𝑡𝑛𝑛

 (6) 

 

Now we need to find values of 𝛼𝛼𝑖𝑖,𝑗𝑗, 𝜔𝜔𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 1,2⋯ , 𝑟𝑟 , that minimizes the expression 

 ∑𝑟𝑟𝑖𝑖=1 ∑
𝑏𝑏−𝑎𝑎
ℎ
𝑛𝑛=1 ℰ𝑖𝑖,𝑛𝑛

2 (𝑡𝑡) (7) 

where ℎ is the steplength. 

Using (7) and (5), the problem of finding approximate solution of (2) is now formulated as an optimization 
problem in the following manner:  

 

Minimize:    = ∑𝑟𝑟𝑖𝑖=1 ∑
𝑏𝑏−𝑎𝑎
ℎ
𝑛𝑛=1 ℰ𝑖𝑖,𝑛𝑛

2 (𝑡𝑡)

Subject  to:    =

⎝

⎜
⎛

𝛼𝛼1,1 𝛼𝛼1,2 ⋯ 𝛼𝛼1,𝑟𝑟
𝛼𝛼2,1 𝛼𝛼2,2 ⋯ 𝛼𝛼2,𝑟𝑟
⋮ ⋱ ⋮
𝛼𝛼𝑟𝑟,1 𝛼𝛼𝑟𝑟,2 ⋯ 𝛼𝛼𝑟𝑟,𝑟𝑟

⎠

⎟
⎞

⎝

⎜
⎛

exp(𝜔𝜔1𝑡𝑡0)
exp(𝜔𝜔2𝑡𝑡0)
⋮
exp(𝜔𝜔𝑟𝑟𝑡𝑡0)

⎠

⎟
⎞

=

⎝

⎜
⎛

𝜂𝜂1
𝜂𝜂2
⋮
𝜂𝜂𝑟𝑟
⎠

⎟
⎞ (8) 

In this work, we solved (8) using the differential evolution algorithm. Suitable values of 𝛼𝛼𝑖𝑖,𝑗𝑗, 𝜔𝜔𝑖𝑖, 𝑖𝑖, 𝑗𝑗 =
1,2⋯ , 𝑟𝑟  which satisfies ((8)) were obtained using this technique. We shall refer to this scheme as 
DE4stiffODE. 

4 Numerical Examples 
In this section, the efficiency of the proposed method is investigated on two test problems. The results 
obtained by our approach are compared with those obtained with the methods proposed by authors in 
the literature. 

4.1 Example 1 
The two dimensional nonlinear Kaps problem  

 �
𝑢𝑢1′

𝑢𝑢2′ � = �
−1002𝑢𝑢1 + 1000𝑢𝑢22
𝑢𝑢1 − 𝑢𝑢2(1 + 𝑢𝑢2) � ,    �

𝑢𝑢1(0)
𝑢𝑢2(0)� = �

1
1 � (9) 

 with exact solution  

 �
𝑢𝑢1(𝑡𝑡)
𝑢𝑢2(𝑡𝑡)� = �

𝑒𝑒−2𝑡𝑡
𝑒𝑒−𝑡𝑡 � (10) 

is considered. Using our proposed technique, the problem is solved over the interval [0,1]  with a 
steplength ℎ = 0.1. As expected, our method approximated the solution almost exactly as  
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 �
𝑢𝑢1(𝑡𝑡)
𝑢𝑢2(𝑡𝑡)� = �

𝛼𝛼1,1 𝛼𝛼1,2
𝛼𝛼2,1 𝛼𝛼2,2��

exp(𝜔𝜔1𝑡𝑡)
exp(𝜔𝜔2𝑡𝑡)� (11) 

where  

𝛼𝛼1,1 = 1100634814035122250906678637333
1100634814035122250906678649769

𝛼𝛼1,2 = 90095597994998040
7973814067594708980711815298377729856804893

𝛼𝛼2,1 = 5895
370946476580559891545427610583

𝛼𝛼2,2 = 497552805822304845199269901657
497552805822304845199269909564

𝜔𝜔1 = −255655159831828977612244310059
127827579915914488806122124384

𝜔𝜔2 = −997456764304870362562667731346
997456764304870362562667511549

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (12) 

A comparison of our results with those obtained by the methods of authors in [4, 13, 24] is presented in 
Table 1. We shall respectively denote by "SDM10" and "SDM14" the methods of order 10 and order 14 
proposed in [24]. Similarly, the method proposed in [4] shall be denoted by "NMTD". The 8th–order 
method proposed in [13] shall be denoted by "SDAM8". 

Table 1.  The absolute error of our “DE4stiffODE” method compared with “SDM10”, “SDM14” and “NMTD” 
methods at some values of t on Example 1. 

 

 

 

 

 

Table 2.  The absolute error of our “DE4stiffODE” method compared with “SDAM” method at t=1 and t=10 on 
Example  

 

 

 

 

 

  t 𝑦𝑦𝑖𝑖 SDM10 SDM14 NMTD DE4stiffODE 

5 𝑦𝑦1 4.6889 × 10−003 5.8258 × 10−002 9.7751 × 10−004 0.0000 

𝑦𝑦2 4.8326 × 10−003 3.2259 × 10−002 1.0556 × 10−006 0.0000 

50 𝑦𝑦1 1.4156 × 10−002 6.7358 × 10−003 2.6559 × 10−005 2.1793 × 10−048 

𝑦𝑦2 1.9419 × 10−002 2.6181 × 10−002 1.1303 × 10−007 0.0000 

150 𝑦𝑦1 6.3883 × 10−004 2.4686 × 10−006 8.7651 × 10−009 8.1072 × 10−092 

𝑦𝑦2 6.1134 × 10−003 5.3608 × 10−004 2.5430 × 10−009 0.0000 

250 𝑦𝑦1 1.7895 × 10−005 8.1636 × 10−010 2.8923 × 10−012 3.0159 × 10−135 

𝑦𝑦2 1.2275 × 10−003 9.7597 × 10−006 6.0129 × 10−011 0.0000 

500 𝑦𝑦1 1.6011 × 10−009 1.6165 × 10−018 5.7208 × 10−021 8.0500 × 10−244 

𝑦𝑦2 1.5267 × 10−005 4.3431 × 10−010 4.2348 × 10−015 0.0000 

Absolute Error 
SDAM  DE4stiffODE 

t h 𝑢𝑢1(𝑡𝑡) 𝑢𝑢2(𝑡𝑡)  h 𝑢𝑢1(𝑡𝑡) 𝑢𝑢2(𝑡𝑡) 
1 0.008 1.6348 × 10−014 0.0000  0.1 0.0000 0.0000 
10 0.006 2.4815 × 10−024 2.0329 × 10−020  0.0000 0.0000 
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It is clear from Table 1 and Table 2 that our proposed approach gave better solution compared with 
existing methods in literature. 

4.2   Example 2 
The second problem considered is the following system of two linear equations  

 �
𝑢𝑢1′

𝑢𝑢2′ � = �
−𝑢𝑢1 + 95𝑢𝑢2
−𝑢𝑢1 − 97𝑢𝑢2� ,    �

𝑢𝑢1(0)
𝑢𝑢2(0)� = �

1
1 � (13) 

 with exact solution  �
𝑢𝑢1(𝑡𝑡)
𝑢𝑢2(𝑡𝑡)� = �

−48
47
𝑒𝑒−96𝑡𝑡 + 95

47
𝑒𝑒−2𝑡𝑡

48
47
𝑒𝑒−96𝑡𝑡 − 1

47
𝑒𝑒−2𝑡𝑡 �. (14) 

Problem (13) has been studied by authors in [2, 4, 6, 7, 10, 12]. Using a steplength of ℎ = 0.7, we solve 
the problem in the interval [0,1] to obtain the following solution:  

 �
𝑢𝑢1(𝑡𝑡)
𝑢𝑢2(𝑡𝑡)� = �

𝛼𝛼1,1 𝛼𝛼1,2
𝛼𝛼2,1 𝛼𝛼2,2��

exp(𝜔𝜔1𝑡𝑡)
exp(𝜔𝜔2𝑡𝑡)� (15) 

 where  

𝛼𝛼1,1 = −48
47

𝛼𝛼1,2 = 95
47

𝛼𝛼2,1 = 48
47

𝛼𝛼2,2 = − 1
47

𝜔𝜔1 = −96
𝜔𝜔2 = −2

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (16) 

Again, as expected, our approach approximated the solution exactly. For comparison purpose, we shall 
denote respectively by "ABOT", "NMTD", "Cash4", "Cash5", "SDEBDF", and "J-K" the methods proposed 
by the authors in [2], [4], [6], [7], [10], and [12]. The efficiency of our proposed scheme can be seen from 
the choice of the steplength. Even with a larger steplength, our scheme gave a better result compared 
with the methods discussed in the literature. 
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Table 3.  Comparison of absolute error of Example 2 at t = 1 with methods discussed in literature 
 

 

5 Conclusion 
The basic steps involved in converting a stiff system of differential equation problem to an optimization 
problem and obtaining approximate solution via differential evolution have been shown. Results of 
numerical implementation show that our approach can be used to obtain almost–exact solution. The 
comparison of our method with those discussed in literature clearly shows the degree of accuracy of our 
method. 
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