Population-Based Algorithms Applied to Brain-Computer Interfaces upon Steady-State Visual Evoked Potentials

Authors

  • Marco Antonio Aceves-Fernandez Universidad Autonoma de Queretaro http://orcid.org/0000-0002-5455-0329
  • Santiago M. Fernandez-Fraga Computer Systems Department, Instituto Tecnológico de Querétaro, Querétaro, México
  • José Emilio Vargas Soto Faculty of Engineering, Universidad Autónoma de Querétaro, Querétaro, México
  • Juan Manuel Ramos Arreguín Faculty of Engineering, Universidad Autónoma de Querétaro, Querétaro, México

DOI:

https://doi.org/10.14738/tmlai.72.6215

Keywords:

Population-Algorithms, EEG signal processing, BCI-SSVEP, Particle Swarm Optimization, Ants Colony Optimization, Genetic Algorithm, Differential Evolution

Abstract

The development of brain-computer interfaces based upon steady-state visual evoked potentials (SSVEP) requires the processing of electroencephalogram signals to detect brain activity triggered on the occipital region of the scalp caused by visual stimuli. Different algorithms based on stochastic and analytical processes have been proposed. However, most of them involve complex transformations and are highly susceptible to local errors. The present work presents algorithms based upon population to optimize the dimensionality of the characteristics of electroencephalogram signals focusing on SSVEP. Population-based algorithms are substantiated on the collective behavior of individuals observed in nature, such as flocks of birds, fish populations and some microorganisms, in order to find optimal solutions. This work shows the algorithms of optimization of particle swarm optimization, ant colony optimization, genetic algorithm and differential evolution algorithms in order to generate an optimum subset of features that improves the identification of features of electroencephalogram signals. Spectral Density of Power, Spectral Coherence methods and the computational cost between these algorithms are presented as measure of comparison.

References

(1) Ab Wahab, M. N., Nefti-Meziani, S., & Atyabi, A. “A comprehensive review of swarm optimization algorithms”. (PloS one, 10(5), 2015).

(2) Adubi, S. A., & Misra, S. (2014, September). A comparative study on the ant colony optimization algorithms. In Electronics, Computer and Computation (ICECCO), 2014 11th International Conference on (pp. 1-4). IEEE.

(3) Adubi S. A., and Misra, S. A comparative study on the ant colony optimization algorithms. (Electronics, Computer and Computation (ICECCO), 11th International Conference on IEEE, 2014), pp. 1-4.

(4) Aggarwal, M., & Saroj, D. Compute travelling salesman problem using ant colony optimization. (International Journal of Computing and Business Research, 2012), ISSN (Online): 2229-6166 Proceedings of 1-Society 2012 at GKU.

(5) Ahirwal, M. K., Kumar, A., & Singh, G. K. “Adaptive filtering of

EEG/ERP through noise cancellers using an improved PSO algorithm”. (Swarm and Evolutionary Computation, 14, 2014), pp. 76-91.

(6) Ahirwal, M. K., Kumar, A., & Singh, G. K. “Analysis and testing of PSO variants through application in EEG/ERP adaptive filtering approach”. (Biomedical Engineering Letters, 2(3), 2012), pp. 186-197.

(7) Al-Fahoum, A. S., & Al-Fraihat, A. A. “Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains”. ISRN Neuroscience, 2014.

(8) Arcentales, A., Giraldo Giraldo, B., Benito, S., Díaz, I., & Caminal Magrans, P “Análisis de coherencia y densidad espectral de potencia entre las señales de flujo respiratorio y la variabilidad del ritmo cardiaco en pacientes en proceso de extubación”. (XXVII Congreso Anual de la Sociedad Española de Ingeniería Biomédica, 2009), pp. 517-520.

(9) Atyabi, A., Luerssen, M., Fitzgibbon, S., & Powers, D. M. “Dimension reduction in EEG data using particle swarm optimization”. In Evolutionary Computation (CEC), 2012 IEEE Congress on IEEE, 2012, June, pp. 1-8.

(10) Atyabi, A., Luerssen, M. H., & Powers, D. M. “PSO-based dimension reduction of EEG recordings: Implications for subject transfer in BCI”. (Neurocomputing, 119, 2013), pp. 319-331.

(11) Bakardjian, H., Tanaka, T., & Cichocki, A. “Optimization of SSVEP brain responses with application to eight-command brain–computer interface”. (Neuroscience letters, 469(1) 2010), pp. 34-38.

(12) Bevilacqua, V., Tattoli, G., Buongiorno, D., Loconsole, C., Leonardis, D., Barsotti, M. & Bergamasco, M. “A novel BCI-SSVEP based approach for control of walking in virtual environment using a convolutional neural network”. In Neural Networks (IJCNN), July 2014 International Joint Conference on IEEE, pp. 4121-4128.

(13) Castellanos, N. P., & Makarov, V. A. “Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis”. (Journal of neuroscience methods, 158(2), 2006), pp. 300-312.

(14) Chandra Mohan, B., & Baskaran, R. Survey on recent research and implementation of ant colony optimization in various engineering applications. (International Journal of Computational Intelligence Systems, 4(4), 2011), pp. 566-582.

(15) Cinar, E., & Sahin, F. “New classification techniques for electroencephalogram (EEG) signals and a real-time EEG control of a robot”. (Neural Computing and Applications, 22(1), 2013), pp. 29-39.

(16) Daly, I., Nasuto, S. J., & Warwick, K. “Single tap identification for fast BCI control”. (Cognitive neurodynamics, 5(1), 2011), pp. 21-30.

(17) Das, S., Abraham, A., & Konar, A. Swarm intelligence algorithms in bioinformatics. (Computational Intelligence in Bioinformatics, Springer Berlin Heidelberg, 2008), pp. 113-147.

(18) Dobrea, D. M., Dobrea, M. C., & Costin, M. “An EEG coherence based method used for mental tasks classification”. (Computational Cybernetics, 2007. ICCC 2007. IEEE International Conference on IEEE, October 2007), pp. 185-190.

(19) Dorigo, M., & Gambardella, L. M. Ant colonies for the travelling salesman problem. (Biosystems, 43(2), 1997), pp. 73-81.

(20) Dorigo, M., Birattari, M., & Stutzle, T. Ant colony optimization. (IEEE

computational intelligence magazine, 1(4), 2006), pp. 28-39.

(21) Escalona-Vargas, D. I., Lopez-Arevalo, I., & Gutiérrez, D. “Multicompare tests of the performance of different metaheuristics in EEG dipole source localization”. (The Scientific World Journal, 2014).

(22) Esqueda Elizondo J. J., Bermúdez Encarnación E. G., Jiménez Beristáin L., Pinto Ramos M. A., Trujillo Toledo D. A., Rojo Ramírez Y., Ruiz Morales A., Munguía Carrillo P. E., Gónzalez Vivas B. A., González Ramírez E. O. “Análisis de Potencia y Coherencia de Señales

Electroencefalográficas en el Seguimiento de un Niño con Trastorno del Espectro Autista”. (Congr. Int. Ing. Electrón. Mem. ELECTRO, Chihuahua, Chih., México, vol. 38, 2016), pp. 169-174.

(23) Gan, R., Guo, Q., Chang, H., & Yi, Y. Improved ant colony optimization algorithm for the traveling salesman problems. (Journal of Systems Engineering and Electronics, 21(2), 2010), pp. 329-333.

(24) Hema, C. R., Paulraj, M. P., Yaacob, S., Adom, A. H., & Nagarajan, R. “Functional link PSO neural network based classification of EEG mental task signals”. (In Information Technology, 2008. ITSim 2008. International Symposium on IEEE, Vol. 3, August 2008), pp. 1-6.

(25) Huang, H., Xie, H. B., Guo, J. Y., & Chen, H. J. Ant colony optimization-based feature selection method for surface electromyography signals classification. (Computers in biology and medicine, 42(1), 2012), pp. 30-38.

(26) Jiang, M., Jiang, S., Zhu, L., Wang, Y., Huang, W., & Zhang, H. (2013). Study on parameter optimization for support vector regression in solving the inverse ECG problem. (Computational and mathematical methods in medicine, 2013).

(27) Kanan, H. R., & Faez, K. An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system. (Applied Mathematics and Computation, 205(2), 2008), pp. 716-725.

(28) Khushaba, R. N., Al-Ani, A., AlSukker, A., & Al-Jumaily, A. “A combined ant colony and differential evolution feature selection algorithm”. (International Conference on Ant Colony Optimization and Swarm Intelligence, Springer Berlin Heidelberg, September 2008), pp. 1-

(29) Khushaba, R. N., AlSukker, A., Al-Ani, A., & Al-Jumaily, A. Intelligent artificial ants based feature extraction from wavelet packet coefficients for biomedical signal classification. (Communications, Control and Signal Processing, 2008. ISCCSP 2008. 3rd International Symposium on IEEE, March 2008), pp. 1366-1371.

(30) Kołodziej, M., Majkowski, A., & Rak, R. J. “A new method of EEG classification for BCI with feature extraction based on higher order statistics of wavelet components and selection with genetic algorithms”. (International Conference on Adaptive and Natural Computing Algorithms, Springer Berlin Heidelberg, April 2011), pp. 280-289.

(31) Lalor, E., Kelly, S. P., Finucane, C., Burke, R., Reilly, R. B., & McDarby, G. “Brain computer interface based on the steady-state VEP for immersive gaming control”. (Biomedizinsche Tecknik, 49(1), 2004), pp. 63-64.

(32) Lian, H., Qin, Y., & Liu, J. An Adaptive Differential Evolution Algorithm Based on New Diversity. (International Journal of Computational Intelligence Systems, 6(6), 2013), pp. 1094-1107.

(33) Lin, Z., Zhang, C., Wu, W., & Gao, X. (2007). Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. (IEEE Transactions on Biomedical Engineering, 54(6), 2007), pp. 1172-1176.

(34) Ma, Y., Ding, X., She, Q., Luo, Z., Potter, T., & Zhang, Y. (2016). Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. (Computacional and mathematical methods in medicine, 2016).

(35) Mancera-Galván, E., Garro-Licón, B. A., and Rodríguez-Vázquez, K. Optimización mediante algoritmo de hormigas aplicado a la recolección de residuos sólidos en UNAM-CU. (Research in Computing Science 94, 2015), pp. 163-177.

(36) Mishra, E. A., Das, D. M., & Panda, D. T. “Swarm intelligence optimization: editorial survey”. (International Journal of Emerging Technology and Advanced Engineering, 3(1), 2013), pp. 217-230.

(37) Mojžíš, F., Kukal, J., & Švihlík, J. Application of optimization heuristics for complex astronomical object model identification. (Soft Computing, 2014).

(38) Muñoz, M. A., López, J. A., & Caicedo, E. F. “Inteligencia de enjambres: sociedades para la solución de problemas (una revisión)”. Ingeniería e Investigación; Vol. 28, núm. 2 (2008); pp. 119-130.

(39) Rajaguru, H., & Prabhakar, S. K. “An Exhaustive Analysis of Code Converters as Pre-Classifiers and K means, SVD, PCA, EM, MEM, PSO, HPSO and MRE as Post Classifiers for Classification of Epilepsy from EEG Signals”. (Journal of Chemical and Pharmaceutical Sciences, Vol. 9 No. 2, 2016).

(40) Regan, D. “Steady state evoked potentials”. (JOSA, 67(11), 1977), pp. 1475-1489.

(41) RIKEN, Brain Science Institute, Laboratory for Advanced Brain Signal Processing and Dr. Hovagim Bakardjian.

(42) Online:http://www.bakardjian.com/work/ssvep_data_Bakardjian.html, (Consulting 2017, January).

(43) Rodríguez-Piñero, P. T. “Introducción a los algoritmos genéticos y sus aplicaciones”. Universidad Rey Juan Carlos, (Servicio de Publicaciones, 2003).

(44) Sun, T. Y., Liu, C. C., Lin, C. L., Hsieh, S. T., & Huang, C. S. “A radial basis function neural network with adaptive structure via particle swarm optimization”. (Particle Swarm Optimization. InTech, 2009).

(45) Storn, R., & Price, K. “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces”. (Journal of global optimization, 11(4), 1997), pp. 341-359.

(46) Stützle, T., & Dorigo, M. ACO algorithms for the traveling salesman problem. (Evolutionary algorithms in engineering and computer science, 1999), pp. 163-183.

(47) Svensson, C. M., Coombes, S., & Peirce, J. W. (2012). Using evolutionary algorithms for fitting high-dimensional models to neuronal data. (Neuroinformatics, 10(2) 2012), pp. 199-218.

(48) Tello, R. J., Valadão, C. T., & Bastos-Filho, T. F. “Control de una Silla de Ruedas Robótica de Alto Rendimiento por Medio de Potenciales Evocados Visuales”. (In ACTAS V Congreso Internacional de Turismo para Todos: VI Congreso Internacional de Diseño, Redes de Investigación y Tecnología para todos DRT4ALL, Universidad Internacional de Andalucía 2015), pp. 369-390.

(49) Thatcher, R. W., North, D., & Biver, C. “EEG and intelligence: relations between EEG coherence, EEG phase delay and power”. (Clinical neurophysiology, 116(9), 2005), pp. 2129-2141.

(50) Tierra-Criollo, C. J., & Infantosi, A. F. C. “Coherencia de las Oscilaciones Cerebrales Durante Estimulación del Nervio Tibial”. (Memorias II Congreso Latinoamericano de Ingeniería Biomédica. Habana Cuba, 2001).

(51) Valbuena, D., Cyriacks, M., Friman, O., Volosyak, I., & Graser, A. “Brain-computer interface for high-level control of rehabilitation robotic systems”. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on IEEE, June 2007, pp. 619-625.

(52) Vera, N. P. M. “Evaluación de la conectividad cerebral bajo fármacos mediante análisis no lineal del EEG”. (Tesis, Universidad Politécnica de Cataluña, Departamento de Ingeniería de Sistemas Automación e Informática Industrial. Barcelona España, 2009).

(53) Wang, Y., & Jung, T. P. “Visual stimulus design for high-rate SSVEP BCI”. (Electronics letters, 46(15), 2010), pp. 1057-1058.

(54) Whitley, D. “A genetic algorithm tutorial”. (Statistics and computing, 1994), 4(2), pp. 65-85.

(55) Yu, S., Wei, Y. M., & Wang, K. “A PSO–GA optimal model to estimate primary energy demand of China”. (Energy Policy, 42, 2012), pp. 329-340.

(56) Yu, X., Liu, J., & Li, H. “An adaptive inertia weight particle swarm optimization algorithm for IIR digital filter”. In Artificial Intelligence and Computational Intelligence, November 2009. AICI'09. International Conference on IEEE, Vol. 1, pp. 114-118.

(57) Yun, H. Y., Jeong, S. J., & Kim, K. S. Advanced harmony search with ant colony optimization for solving the traveling salesman problem. (Journal of Applied Mathematics, 2013).

(58) Zhang, Y., Dong, L., Zhang, R., Yao, D., Zhang, Y., & Xu, P. (2014). An efficient frequency recognition method based on likelihood ratio test for SSVEP-based BCI. (Computational and mathematical methods in medicine, 2014).

(59) Zhu, D., Bieger, J., Molina, G. G., & Aarts, R. M. “A survey of stimulation methods used in SSVEP-based BCIs”. (Computational Intelligence and Neuroscience, 2010).

Downloads

Published

2019-05-01

How to Cite

Aceves-Fernandez, M. A., Fernandez-Fraga, S. M., Soto, J. E. V., & Arreguín, J. M. R. (2019). Population-Based Algorithms Applied to Brain-Computer Interfaces upon Steady-State Visual Evoked Potentials. Transactions on Engineering and Computing Sciences, 7(2), 01. https://doi.org/10.14738/tmlai.72.6215