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ABSTRACT   

Despite the plethora of works on empirical path loss prediction in wireless networks, just a little is 
addressing rural environments. In this work, we consider slope-based empirical path loss models in 
wireless networks at 2.4 GHz using off-the-shelf 802.11n (one transmitter and two receivers at 150Mbp 
and 300Mbps). We define three scenarios usually observed in rural environment. Subsequently, we do a 
measurement campaign and compare results to selected prediction models. We later propose a new 
model based on Liechty model. The new model is compared to Liechty model in Non-Line of Sight (NLOS) 
and combined (LOS and NLOS) scenarios. The Liechty model provided a better prediction in NLOS scenario 
while the new model outperforms in combined scenario. In addition, we observe that the data rate also 
influences the prediction. Especially in free space scenarios, the receiver with the greater data rate 
provides a smaller mean error and standard deviation. 

Keywords: Attenuation, measurement, 802.11n, network planning, rural area. 

1 Introduction  
Wireless networks are incontestably an appealing solution to bridge the digital divide between rural and 
urban regions [1]. This easy-to-deploy technology, especially in hard-to-wire regions or emergency 
situation [2], can provide bad results and be useless if the network is not well planned [3]. The difficulty 
when planning a wireless network is to predict the quality of links by estimating the path loss of the signal.  

A frequently used tool to predict the quality of signal is the empirical path loss model. However, such a 
model is usually tied to a specific environment because of the particular configuration. This configuration 
depends on the devices used as transmitter and the receiver, the distance between them, the frequency 
of the signal, and the height of the antenna. Despite the great number of path loss models [4], [5], [6], [7], 
[8], [9], just few are focusing on propagation at 2.4 GHz [10], [11]. 

However, with the vulgarization of off-the-shelf technologies like IEEE 802.11n, wireless networks at 2.4 
GHz and 5 GHz represent currently an attractive solution to connect rural regions. There is therefore a 
need to predict the signal path loss at these particular frequencies in rural environment. This is a prior 
task before estimating the cost of deploying such an infrastructure in rural areas [12]. 
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This paper is an extended version of [13]. In this paper, we are interested to provide a more precise 
empirical model for predicting signal path loss at 2.4Ghz using off-the-shelf 802.11n in outdoor 
environment. For this purpose, we do a measurement campaign in three different scenarios (free space, 
raised space and built space) using two different receivers (150Mbps and 300Mbps). Afterwards, we 
compare the gathered data to the attenuation predicted by selected empirical models. Liechty model [11] 
shows itself as the more precise empirical model by providing the lowest mean error in raised space and 
built space using both receivers. Finally, we improve this model to obtain a better prediction model by 
considering the distance to the first breakpoint.  

The rest of the paper is organized as follows: section 2 introduces to empirical models and presents the 
selected models for this study; the methodology, material, scenario and data collection approaches are 
presented in section 3. Section 4 is dedicated to the numerical analysis of data and section 5 presents and 
evaluates a new model. 

2 Prediction Models for Wireless Networks 
The prediction of path loss in wireless networks have been tackled by several works. They can be grouped 
into two classes: theoretical (deterministic) models and empirical ones.  

Theoretical models, also called deterministic approaches, are based on the physical phenomena of radio 
wave propagation. There are different types of theoretical methods: multi-ray models taking into account 
transmitted and reflected rays [14], [15], and digital or discrete models depending on Maxwell's equations 
[16], [17]. But in practice, the implementation of deterministic models usually requires a huge knowledge 
of the field, which is sometimes nearly impossible to obtain in some cases. In addition, deterministic 
models make use of complex algorithms which usually require a lot of computation depending on the 
expected accuracy of the model. For this reason, deterministic models are used generally for indoor 
environments or to well-defined and small size outdoor environments. 

A totally different approach for predicting path loss without an exact knowledge of the environment has 
emerged with the development of statistics and probability. In this approach, the calculation of the signal 
path loss is made along a single radius shown by the line connecting the transmitter and the receiver. This 
second class of models is called empirical models. 

2.1 Characteristics of path loss models 
The path loss of a signal is the ratio between the transmitted power and the received power using the 
following expression (1). 

1010 log t

r

PPL
P

=                                                                            (1) 

Where: 

: Signal path loss  

: Transmitted Power  

: Received Power  

By using the Friis equation [18], and considering antennas as isotropic, we obtain (2)  

PL ( )dB

tP ( )dBm

rP ( )dBm
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With c fλ= , f frequency in Hz  and 8 13.10 .c m s−= , we finally obtain (3) by changing the unit of 

frequency and the distance  
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                                      (3) 

    With d in km and f in GHz in (3.1) or MHz in (3.2). 

Path loss models are built from the basic model (3). The calculation of signal path loss between the 
transmitter and the receiver considers in practice other factors such as obstacles and height of antennas. 

The list of some common path loss models is given in Table 1. 

Table 1. Common empirical path loss models 

Models Condition   Cite 

|-Free space  [18] 

   |-Egli f ϵ ]30; 3000[ [4] 

   |-One Slope  [19] 

       |-Dual Slope  [19] 

       |-Log Normal Shadowing  [20] 

       |-Partitioned  [20] 

       |-Liechty f ≈ 2400 [11] 

       |-Okumura f ϵ ]150; 1920[ ; d ϵ ]1; 100[;  htx ϵ ]30; 200[ ; hrx ϵ ]3; 10[ [5] 

       |-Okumura-Hata f ϵ ]150; 1500[ ; d ϵ ]1; 10[; htx ϵ ]30; 200[ ; hrx ϵ ]1; 10[ [6] 

              |-COST 231 Hata f ϵ ]150; 2000[ ; d ϵ ]1; 20[;  htx ϵ ]30; 200[ ; hrx ϵ ]1; 10[ [21] 

              |-Hata-Davidson f ϵ ]150; 1500[ ; d ϵ ]1; 300[; htx ϵ ]30; 200[ ; hrx ϵ ]1; 10[ [24] 

              |-Rural f ϵ {160; 400; 900} [8] 

              |-ITU-R 1.5 < f< 2; 1 <d< 10; 30 <htx< 200; 1 <hrx< 10 [26] 

              |-ECC-33 700 ≤ f ≤ 3500; 1 <d< 10; 20 <htx< 200; 1 <hrx< 10 [25] 

         |-Green Obaidat  [22] 

         |-Erceg f ≈ 2000; 1 <hrx< 2 [7] 

               |-SUI 2500 <f< 2700; 0.1 <d< 8; 20 <htx< 80; 2 <hrx< 10 [23] 

f: frequency (MHz);     d: distance between the transmitter and the receiver (Km) 

htx: height of transmitter antenna (m);    hrx: height of the receiver antenna (m) 
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2.2 Selected models 
The present study focuses on five prediction models generally used in micro-cellular areas: One Slope, 
Dual Slope, Log Normal Shadowing, Partitioned, and Liechty. 

2.2.1 One Slope Model 

The One Slope model is a Log Distance based prediction model. In [18], authors show how the attenuation 
of the signal weakens with the distance. The attenuation on an exponent which indicates how the path 
loss increases rapidly with distance. The expression of the path loss is given by (4). 

1 0 10
0

( ) 10 logSlope fs
dPL PL d n
d

 
= +  

 
                                                            (4) 

Where: 

0( )fsPL d : Signal path loss in free space at distance d0 (m) 

0d : Distance of reference (m) 

d : Distance between the transmitter and the receiver (m) 

n : Path loss exponent of the environment 

The expression of 0( )fsPL d  is given by (3). Prior measurements are required in order to calibrate the 

parameter n  by using the least squares method. An obvious limit of this model is that it does not consider 
obstacles between the transmitter and the receiver. 

2.2.2 Dual-slope Model 

The Dual-slope model extends the One Slope model [18]. The first slope considers Line Of Sight (LOS), and 
the second slope considers Non-Line Of Sight (NLOS). The expression of the path loss is given by (5).  

1 10

2 0
1 10 2 10

10 log (5.1)
( )

10 log 10 log (5.2)
Slope fs

bp
bp

n d

PL PL d dn d n
d

 
 

= +  
+ 

 

                                         (5) 

    With 1 bpm d d< ≤  in (5.1) and bpd d>  in (5.2). 

Where: 

0( )fsPL d : Signal path loss in free space at distance d0 (dB) 

0d : Distance of reference (m) 

d : Distance between the transmitter and the receiver (m) 

bpd : Distance between the transmitter and the first obstacle (m) 

1n : Path loss exponent of the environment bpd d≤   
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2n : Path loss exponent of the environment bpd d>  

The expression of 0( )fsPL d is still given by (3) and values of the exponents 1n  and 2n  are determined 

using the least squares method and field measurements. 

2.2.3 Log Normal Shadowing Model 

The Log Normal Shadowing Model is another improvement of One Slope model [18]. It considers that the 
signal path loss at a distance is in fact a random variable, due to the effect of multipath propagation and 
obstacles encountered by the wave. The expression of the path loss is given by (6).  

0 10
0

( ) 10 logLN Sha fs
dPL PL d n
d σχ−

 
= + + 

 
                                                          (6) 

Where: 

0( )fsPL d : Signal path loss in free space at distance d0 (dB) 

: Distance of reference (m) 

: Distance between the transmitter and the receiver (m) 

σχ : Shadowing effect (dB) 

: Path loss exponent of the environment 

The expression of 0( )fsPL d is still given by (3). σχ  is a Gaussian random variable (in dB) with zero mean 

and standard deviation σ . Values of n and σ  are also determined from field measurements [18]. 

2.2.4 Partitioned Model 

This model is also an extension of the One Slope model. It has four different expressions of signal path 
loss depending on the distance between the transmitter and the receiver. The expression of the path loss 
is given by (7) [24].  
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0

10
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20 log (7.1)

20 30log (7.2)10
( )

29 60log (7.3)20

47 120log (7.4)40

part fs

d

d

PL PL d d

d

 
 
 +  = +  

+ 
 
 +  

                                     (7) 

With 1 10m d m< ≤  in (7.1), 10 20m d m< ≤  in (7.2), 20 40m d m< ≤  in (7.3) and 40d m>  in (7.4). 

Like in previous models, the expression of 0( )fsPL d   is also given by (3). 

0d

d

n
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2.2.5 Liechty Model 

The Liechty Model has been proposed by Christopher Lorne Liechty [11]. The model extends the One slope 
model in order to consider the attenuation due to obstacles such as trees and buildings. The expression 
of the path loss is given by (8).  

0 10
0

( ) 10 log *Liechty fs i i
i

dPL PL d n num a
d

 
= + + 

 
∑                                       (8) 

Where: 

0( )fsPL d : Signal path loss in free space at distance d0 (m) 

0d : Distance of reference (m) 

d : Distance between the transmitter and the receiver (m) 

inum : Number of obstructions of type i 

ia : Attenuation of obstructions of type i (dB) 

n : Path loss exponent of the environment 

The expression of 0( )fsPL d  is given by (3), as it has been the case in previous models. 

 

(a)       (b) 

       

(c)      (d) 

Figure 1. Measurement points on the field. 
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3 Methodology 

3.1 Environment of the study 
The selected area for measurements is the campus of the University of Ngaoundere, in Cameroon. This 
area is mainly characterised by randomly distributed trees and some small buildings as shown in Figure 
1.a. To carry out measurements, three scenarios have been designed: 

• Free space: a distance of 600m has been selected. At each interval of 50metres, the signal strength 
is measured. Figure 1.b shows the different points of measurement. 

• Wooded area: the average height of trees is around 6,5metres. Fig.1.c shows the different points 
of measurement for this scenario.  

Built-up area: houses have an average height of about 3.5metres. The different points of measurements 
are shown in Figure 1.d. 

3.2 Description of the hardware and software tools 
The access point used as a transmitter in all scenarios is manufactured by Alpha Network and complies 
with the IEEE 802.11n standard. it offers a bandwidth of 150Mbps and operates at 2.4GHz. The transmit 
power is 30dBm with an antenna gain of 12 dBi. Two wireless USB dongles are used as receivers. Both are 
compliant to the IEEE 802.11n, 802.11b and 802.11g standards. They are operating at 2.4GHz but 
providing different bandwidth (150Mbps and 300Mbps). A USB GPS is used to determine the different 
points for measurements. The characteristics of hardware is provided in Table 2. 

We used the free and open source software Vistumbler in version 9.8 for wireless signal strength 
measurement. It enables live Google Earth tracking of access points and supports GPS integration. 

 

3.3 Data collection and analysis 
We used the Single Marker Measurements [11] as positioning mode. The antennae of the USB dongles 
are oriented towards the sky throughout the measurement campaign. Ten measurements are performed 
at each selected point with the help of Vistumbler. Retrieved data are recorded in predefined Datasheets. 

Data analysis is performed in five steps. First, we calculate the mean loss of signal. Second, we determine 
the fitting curve by using the least squares method. Third, we evaluate the path loss exponent n. Fourth, 

Table 2. Characteristics of hardware 

Type of equipment Characteristics 

Access Point Manufacturer: Alpha Network, Model: N2, Power: 30 dBm, Antenna: 12 dBi 

Wireless USB dongle 1 
Manufacturer: Dodocool, Rate: 300 Mbps, Chipset: Realtek 8191, Driver: 
RTL8188SU/8191FEB28, Antenna: 2 dBi 

Wireless USB dongle 2 
Manufacturer: Dodocool, Rate: 150 Mbps, Chipset: Ralink RT5370, Driver: 
RALINK23FEB, Antenna: 2 dBi 

USB GPS Manufacturer: Navilock, Model: NL-464US 60122, Sensibility: -159, dBm 
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we calculate the σ  parameter of Log Normal Shadowing Model. Finally, we compare the predicted by the 
selected models with the mean loss of the signal measured in the field. 

The path loss exponent is determined using the least squares method. The attenuation of each type of 
obstacle required by the Liechty model is considered as the difference between the mean loss of the signal 
obtained before and after the obstacle. 

The value of σ is determined using (9):  

2

2
( )

1
m r

i
P P

i k
k

σ
−

= ≤ ≤
∑

                                   (9) 

With: 

mP : Power of the measured received signal 

rP :  Strength of the estimated received signal  

k : Number of measurement points 
 

4 Results interpretation 
Table 3 provides empirical values of the model parameters. The mean error and the standard deviation 
are used as indicators to compare the predicted values to the measured ones. 

 

4.1   Result analysis in free spaces 
A total number of 100 measurements have been performed in free space. Figure 2 shows the pathloss of 
the signal for both USB wireless receivers (300Mbps and 150Mbps) depending on the distance Transmitter 
– Receiver (TR). Obviously, the mean loss of the signal increases as the TR distance increases. However, 
the 300Mbps wireless USB receiver provides lower losses than the 150Mbps one. Consequently, the 
maximal distance at which the signal is still useful (90dB) is about 350metres and 320metres for 
respectively 300Mbps and 150Mbps receiver. 

Table 3. Empirical values of the model parameters 

          300Mbps / 150Mbps 

Environment Obstruction (dB)          n         σ 

Free Space 0 1.950 / 2.186 1.12 / 1.50 

Wooded area 0.37 3.407 / 3.656 2.41 / 2.61 

Built-up area 0.41 4.799 / 4.996 2.10 / 2.48 
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Comparison between models is summarised in Table 4. From Figure 3, One Slope, Dual Slope and Liechty 
models are quite close to the measured values. Because of their large errors, results from the Partitioned 
model could not be plotted. 

From the experimental results provided in Table 4, One Slope, Dual Slope, and Liechty models are the best 
in free space. In fact, they provide a mean error of 0.90dB and a standard deviation of 1.12dB for the 
300Mbps receiver, and a mean error of 1.12dB and a standard deviation of 1.50dB for the 150Mbps 
receiver. 

  

 

 

Fig. 2. Mean losses in free space 

  

a) 300Mbps wireless receiver   b) 150Mbps wireless receiver 

Fig. 3. Comparison of the predicted values in free space.e 
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4.2   Result analysis in a wooded area 
A total number of 200 measurements have been performed in wooded area. Figure 4 shows the pathloss 
of the signal for both USB wireless receivers (300Mbps and 150Mbps) depending on the TR distance. 
Figure 4 shows an increasing saw tooth curve, in contrary to the fairly linear curve observed in free space. 
The main reason is the presence of obstacles which do not ease the prediction of the path loss at any 
point. However, as it is the case in free space, the 300Mbps wireless USB receiver provides lower losses 
than the 150Mbps one. In addition, the maximal distance at which the signal is still useful (90dB) is about 
182metres and 177metres for respectively 300Mbps and 150Mbps receiver. 

 

From Figure 5, the predicted values from the Liechty model are quite close to the measured ones. 

Table 4. Experimental results in free space 

  Models 
300Mbps / 150Mbps 

Mean Error (dB) Standard Deviation (dB) 

  One Slope  0.90 / 1.12 1.12 / 1.50 

  Dual Slope  0.90 / 1.12 1.12 / 1.50 

  Lietchy  0.90 / 1.12 1.12 / 1.50 

  Log Normal  1.54 / 1.71 1.68 / 1.85 

  Partitioned  141.03 / 103.83 142.89 / 104.06 

 

 

 

 

 

Fig. 4. Mean losses in wooded area. 
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According to the experimental results provided in Table 5, the Liechty model provides the best results. In 
fact, this model provides a mean error of 0.94dB and a standard deviation of 1.35dB for the 300Mbps 
receiver; and a mean error of 1.04dB and a standard deviation of 1.50dB for the 150Mbps receiver. 

 

4.3   Result analysis in built-up areas 
A total number of 200 measurements have been performed in built-up area. Figure 6 shows the pathloss 
of the signal for both USB wireless receivers (300Mbps and 150Mbps) depending on the TR distance. 
Because of the presence of obstacles, Figure 6 also shows a non-monotonic increasing curve. As expected, 
since it is the case in free space and wooded area, the 300Mbps wireless USB receiver provides lower 
losses than the 150Mbps one. From Figure 7, the predicted values from the Liechty model are quite close 
to the measured ones. In contrary to previous scenarios, the maximal distance at which the signal is still 
useful (90dB) is the same and about 165metres, irrespectively the type of receiver. 

 

a) 300Mbps wireless receiver    b) 150Mbps wireless receiver 

Fig. 5. Comparison of the predicted values in the wooded area. 

Table 5. Experimental results in wooded area 

Models 
300Mbps / 150Mbps 

Mean Error (dB) Standard Deviation (dB) 

One Slope 1.73 / 2.02 2.10 / 2.48 

Dual Slope 1.73 / 2.02 2.10 / 2.48 

Lietchy 1.60 / 1.27 2.03 / 1.78 

Log Normal 1.97 / 1.85 2.49 / 2.30 

Partitioned 109.71 / 108.48 109.93 / 108.69 
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From the experimental results provided in Table 6, the Liechty model provides once more the best results.  
Indeed, this model provides a mean error of 1.60dB and a standard deviation of 2.03dB for the 300Mbps 
receiver; and a mean error of 1.27dB and a standard deviation of 1.78dB for the other one. new model. 

5 Improving the Lietchy model in combined environment 
The better results of the Liechty model are justified by the fact that the model considers the number of 
obstacles between transmitter and receiver as well as their attenuation on the signal. However, we 
assumed that the distance between the transmitter and each attenuation point may also influence the 

 

Fig. 6. Mean losses in a built-up area. 

Table 6. Experimental results in built-up area 

Models 
300Mbps / 150Mbps 

Mean Error (dB) Standard Deviation (dB) 

One Slope 1.73 / 2.02 2.10 / 2.48 

Dual Slope 1.73 / 2.02 2.10 / 2.48 

Lietchy 1.60 / 1.27 2.03 / 1.78 

Log Normal 1.97 / 1.85 2.49 / 2.30 

Partitioned 109.71 / 108.48 109.93 / 108.69 

 

 

 

 

 
a) 300Mbps wireless receiver    b) 150Mbps wireless receiver 

Fig. 7. Comparison of predicted values in a built-up area. 
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quality of the signal. Therefore, considering those distances during the prediction of the signal could 
improve the accuracy. But, since it is difficult to consider the distances of all those attenuation points, we 
take only into account the distance to the first obstacle. This point is called the breakpoint. We suppose 
that the greatest attenuation of the signal occurs at this point. 

5.1   Path loss expressions 
The new model is obtained by merging the parameters of the Dual slope and the Liechty models. We 
obtain equation (10):  

1 10

0
2 10 1 10

10 log (10.1)
( )

10 log 10 log * (10.2)
new fs

bp i i
ibp

n d

PL PL d dn n d num a
d

 
 

= +  
+ + 

 
∑

                 (10) 

    With, 1 bpm d d< ≤  in (10.1) and bpd d>  in (10.2). 

Where: 

0( )fsPL d : Signal path loss in free space at distance d0 (m) 

0d : Distance of reference (m) 

d : Distance between the transmitter and the receiver (m) 

bpd : Distance from the transmitter to the first obstacle (m) 

inum : Number of obstructions of type i 

ia : Attenuation of obstructions of type i (dB) 

1n : Path loss exponent of the environment bpd d≤   

2n : Path loss exponent of the environment bpd d>  

5.2   Accuracy analysis of the model 
The accuracy of the new model is analyzed by considering the measurements of the signal in both LOS 
and NLOS. Only wooded and built-up areas are considered. The consideration of both LOS and NLOS is 
materialized by using different path loss exponents, as it is the case in the new model: 1n  in LOS and 2n  

in NLOS. The accuracy is evaluated in NLOS environment and in combined environment (LOS and NLOS) 
environment. 

5.2.1 Wooded area 

Table 7 presents the results of the accuracy analysis in the wooded area. From Table 7, even if both models 
provide similar results, Liechty model is more precise in NLOS environment. However, the new model 
provides better predictions in combined environment. In fact, the new model provides in combined 
environment a mean error of 2.33dB and 2.67dB respectively for 300Mbps and 150Mbps USB receivers; 
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which are lower compared to 4.22dB and 4.00dB provided by Liechty model. Likewise, the new model also 
provided in combined environment a standard deviation of 4.02dB and 4.21dB respectively for 300Mbps 
and 150Mbps receivers; which are also lower compared to 5.12dB and 5.09dB provided by Liechty model. 
Figure 8 and 9 give a graphical comparison between both models and the measured data in wooded area, 
respectively for combined (LOS and NLOS) and NLOS environments. 

 

 

 

5.2.2 Built-up area 

Table 8 presents the results of the accuracy analysis in the built-up area. From Table 8, even if both models 
provide similar results, Liechty model provides better predictions in NLOS environment. But, the new 
model is more precise in combined environment as it was the case in wooded area. Actually, the new 

Table 7. Results of the accuracy analysis in the wooded area 

Models 
LOS and NLOS (300Mbps/150Mbps) NLOS only (300Mbps/150Mbps) 

Mean Error (dB) Std Deviation (dB) Mean Error (dB) Std Deviation (dB) 

Liechty 4.22 / 4.00 5.12 / 5.09 0.94 / 1.04 1.35 / 1.50 

New model 2.33 / 2.67 4.02 / 4.21 1.13 / 2.02 1.73 / 2.41 

 

 

 

 

   

a) 300Mbps wireless receiver   b) 150Mbps wireless receiver 

Fig. 8. Accuracy of models in the wooded area (combined: LOS and NLOS). 

    

a) 300Mbps wireless receiver   b) 150Mbps wireless receiver 

Fig. 9. Accuracy of models in the wooded area (NLOS). 
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model provides in combined environment a mean error of 2.36dB and 2.61dB respectively for 300Mbps 
and 150Mbps receivers; which are low compared to 4.35dB and 4.00dB provided by Liechty model. 
Likewise, the new model also provided in combined environment a standard deviation of 4.01dB and 
4.19dB respectively for 300Mbps and 150Mbps receivers; which are also low compared to 5.46dB and 
5.45dB provided by Liechty model. Figure 10 and 11 give a graphical comparison between both models 
and the measured data in built-up area, respectively for combined (LOS and NLOS) and NLOS 
environments. 

 

 

 

 

Table 8. Results of the accuracy analysis in the wooded area (LOS and NLOS) 

Models 
LOS and NLOS (300Mbps/150Mbps) NLOS only (300Mbps/150Mbps) 

Mean Error (dB) Std Deviation (dB) Mean Error (dB) Std Deviation (dB) 

Liechty 4.35 / 4.00 5.46 / 5.45 1.60 / 1.27 2.03 / 1.78 

New model 2.36 / 2.61 4.01 / 4.19 1.73 / 1.41 2.15 / 1.88 

 

 

 

 

  

a) 300Mbps wireless receiver  b) 150Mbps wireless receiver 

Fig. 10. Accuracy of models in the built-up area (combined: LOS and NLOS). 

   

a) 300Mbps wireless receiver    b) 150Mbps wireless receiver 

Fig. 11. Accuracy of models in the built-up area (NLOS). 
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6 Conclusion 
The aim of this work was to determine a precise empirical path loss model for rural regions at 2.4GHz. We 
defined three scenarios tied to rural regions and we conducted a measurement campaign. We compared 
five selected models and we found that Liechty model is the more precise one. But Liechty model 
outperforms others models in separated environments. Further, we improved this model in combined 
environment (considering LOS and NLOS) by considering the distance to the first breakpoint. We obtained 
a better prediction model with a mean error of 2.33dB/2.67dB and a standard deviation of 4.02dB/4.21dB 
in worst case in wooded area and a mean error of 2.36dB/2.61dB and a standard deviation of 
4.01dB/4.19dB in worst case in built space, respectively for 300Mbps/150Mbps USB receivers. A non-
neglecting observation is the fact that standard deviation and the mean error in path loss prediction 
increase for receiver with low data rate. It would be interesting to study this variation in other to propose 
more realistic models. 

Since we usually observe more than one breakpoint between the transmitter and the receiver, it can be 
interesting to study the impact of other breakpoints on the precision of the path loss model and to 
consider those points without making the model more complex. A last perspective is to implement the 
path loss model in network simulator in order to predict more accurately the signal path loss in likewise 
rural regions. 
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