Systemic thermodynamics of soil water

Authors

  • Erik Braudeau VALORHIZ, R&D Department. 1900, Boulevard de la Lironde, PSIII, Parc Scientifique Agropolis, F34980 Montferrier sur Lez., France.

DOI:

https://doi.org/10.14738/aivp.94.10755

Keywords:

Systemic approach of soils, Hydrostructural pedology, Thermodynamics laws, Molecular & atomic levels

Abstract

We show how the systemic approach to represent and model the internal and external organizations of the soil, which is an innovative way in pedology, could have led us to the definition of nested and hierarchical thermodynamic systems and subsystems. Specifically, we review systemic theory of the natural environment, in our case – the representative pedon (the smallest spatial unit in soil science) and its internal organization – namely: the soil horizons, their pedostructure with their two aqueous phases at thermodynamic equilibrium and, finally, the gas and the solid phases. Thereafter, we show how to further deepen the study of the soil hydrostructural properties – by adding two levels of the water molecule organization: both intramolecular – in relation to its atoms – and intermolecular – in relation to other water molecules of the aqueous phase under study.

In thermodynamics of soil water, we show how the corrected Gibbs-Duhem equation explains not only results obtained solely by using the systemic approach – considering the Gibbs free energy constancy for each phase related to the solid phase – but also provides an explanation of why in such a case no external energy input or energy exchange should be necessary to ensure the chemical potential variation as a function of water content for each phase in soil. Specifically, we might explain the entropy production without energy exchange, which might be attributable to changes in the atomic vibration amplitudes compensated by the concomitant increases in their vibrational frequencies. Thus, the basic laws of thermodynamics do become apparently visualizable when the soil water evaporates in contact with the surrounding air – just up to the achievement of the pertinent thermodynamic equilibrium.

References

Sposito, G.1981. The thermodynamic theory of water in soil. In G. Sposito (ed.) The Thermodynamics of Soil Solutions. Oxford Clarendon Press. 187-215.

Low, P.F. and J.F. Margheim. 1979. The swelling of clay: I. Basic concepts and empirical equations. Soil Sci. Soc. Am.J. 43:473-481.

Low, P.F. 1980. The swelling of clay: II. Montmorillonites. Soil Sci. Soc. Am. J. 44:667-676.

Low, P.F. 1987. Structural component of the swelling pressure of clays. Langmuir, 3:18-25.

Braudeau, E., and R.H. Mohtar. 2004. Water potential in nonrigid unsaturated soil-water medium. Water Resour. Res. 40:W05108.

Braudeau, E.; Mohtar, R.H. 2009 .Modeling the soil system: Bridging the gap between pedology and soil-water physics. Glob. Planet. Chang. J. 67, 51–61.

Braudeau, E., Mohtar, R. H., El Ghezal, N., Crayol, M., Salahat, M., and Martin, P. 2009. A multi-scale “soil water structure” model based on the pedostructure concept. Hydrol. Earth Syst. Sci. Discuss. 6, 1111–1163. doi: 10.5194/hessd-6- 1111-2009

Belhouchette H., E. Braudeau, M. Hachicha, M. Donatelli, R. H. Mohtar, J. Wery. 2008. Integrating spatial soil organization data with a regional agricultural management simulation model: a case study in Northern Tunisia. Transactions of the ASABE. Vol. 51(3): 1099-1109.

Braudeau, E. 2020. Systemic modelling of soil water thermodynamics under natural conditions of air temperature and pressure. Eur. J. Appl. Sci. 2020, 8, 46–72. doi.org/10.14738/aivp.85.9117

Braudeau E., 1988. Equation généralisée des courbes de retrait d'échantillons de sols structurés. C. R. Acad. Sci. Paris, 307, série II: 1731-1734.

Braudeau, E., and Bruand, A. 1993. Détermination de la courbe de retrait de la phase argileuse à partir de la courbe de retrait établie sur échantillon de sol non remanié. C. R. Acad. Sci. Paris 316, 685–692.

Braudeau, E., C. Zidi, A. Loukil, C. Derouiche, D. Decluseau, M. Hachicha, and A. Mtimet. 2001. Un système d'information pédologique, Le SIRS‐Sols du périmètre irrigué de Cébala‐Borj‐Touil (basse vallée de la Medjerda). Bulletin Sols de Tunisie, Numéro spécial 2001. E. Braudeau and A. Mtimet, eds. Tunis, Tunisia: Direction des Sols.

Braudeau, E., Costantini, J., Bellier, G., and Colleuille, H. 1999. New device and method for soil shrinkage curve measurement and characterization. Soil Sci. Soc. Am. J. 63, 525–535. doi: 10.2136/sssaj1999.03615995006300030015x

Braudeau, E., Frangi, J.-P. & Mohtar, R.H. 2004. Characterizing nonrigid aggregated soil-water medium using its shrinkage curve. Soil Science Society of America Journal, 68, 359–370.

Le Moigne, J.-L. La Théorie du Système Général, Théorie de la Modélisation, 4th ed.; 1994 PUF: Paris, France.

Braudeau, E.; Assi, A.T.; Mohtar, R.H. 2016. Pédologie Hydrostructurale. ISTE Editeurs : London, UK; ISBN papier : 9781784051402, ISBN ebook : 9781784061401

bis Braudeau, E.; Assi, A.T.; Mohtar, R.H. 2016. Hydrostructural Pedology. ISTE: London, UK; Wiley: Hoboken, NJ, USA; ISBN 978-1-84821-994-6

Braudeau, E.; Mohtar, R.H. 2014. A framework for soil-water modeling using the pedostructure and structural representative elementary volume (SREV) concepts. Front. Environ. Sci. 2014, 2, 24.

Braudeau, E.; Mohtar, R.H. 2021. Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment. Systems 2021, 9, 8. https://doi.org/10.3390/ systems9010008

Braudeau, E., Assi, A. T., Boukcim, H., and Mohtar, R. H. 2014. Physics of the soil medium organization part1: thermodynamic formulation of the pedostructure water retention and shrinkage curves. Front. Environ. Sci. 2014, 2:4. doi: 10.3389/fenvs.2014.00004

Downloads

Published

2021-09-18

How to Cite

Braudeau, E. . (2021). Systemic thermodynamics of soil water. European Journal of Applied Sciences, 9(4), 271–295. https://doi.org/10.14738/aivp.94.10755