DFT investigation of carbon dioxide effects with temperature on hydrated tetra and penta-saccharide complexes
DOI:
https://doi.org/10.14738/aivp.95.10896Keywords:
temperature, carbon dioxide, amylose and ONIOMAbstract
Plantain banana mainly constitutes by water and starch. The latter includes amylopectin and amylose. Glucose represents their core molecule. This work aims to elucidate the temperature and carbon dioxide effects in four (AM4G) or five (AM5G) of its hydrated synthons (basic unit). Ultimately, it wants to identify their role in the deterioration of starch components. The research exploits the resources of quantum chemistry to generate the relevant geometric, thermodynamic, and spectroscopic parameters related to the hydrated tetra and penta-saccharide at the ONIOM level (B3LYP/6–311++G [d, p]: AM1). Their analysis reveals the following results. The temperature maintains the geometries of both complexes. It retains most of the enthalpies, and entropy associated with their formation. Moreover, it lowers the free enthalpies of the latter. Furthermore, it increases the frequency shifts . This work also identifies the action of carbon dioxide. This one almost conserves the geometry of the two complexes and their hydrogen bonds. Its effects on the thermodynamic quantities depend on the temperature. Carbon dioxide maintains the exothermic character of the complexations involved. More, it transforms their entropy. It increases the free enthalpy of fluctuating importance. It keeps the non-spontaneity of complexation reactions. Its effects concern the frequency shifts . These rely on the temperature. Dioxide carbon exalts them in function of these latter.
References
E. Assemand, F. Camara, K. Françoise, K. Victorien, and P. L. Kouamé, « Caractérisation biochimique des fruits de plantain (Musa paradisiaca L.) variété Agnrin de Côte d’Ivoire et évaluation sensorielle de ses produits dérivés », Journal of Applied Biosciences, vol. 60, pp. 4438–4447, 2012.
K. A. Yao, M. D. Koffi, B.Z. Irié and S. L. Niamké, “Effet de la substitution partielle de la farine de blé par la purée de banane plantain (Musa AAB) bien mûre sur la qualité des produits de pâtisserie,” Journal of Applied Biosciences, vol. 82, pp. 7436–7448, 2014.
A. Glass and R. Rand, “Alginate immobilization of banana pulp enzymes for starch hydrolysis and sucrose interconversion,” Journal of Food Sci, vol. 47, pp. 1836–1839, 1982.
B. R. Cordenunsi and F. M. Lajolo, “Starch breakdown during banana ripening: sucrose synthase and sucrose phosphate synthase,” Journal of Agric. Food Chem, vol. 43, pp. 363–372, 1995.
F. A. Momany, M. Appell and G. A. Strati, “B3LYP/6–311++G** study of monohydrates of α and β—D-glucopyranose: hydrogen bonding, stress energies, and effect of hydration on internal coordinates,” Carbohydrate Research, vol. 339, pp. 553–567, 2004.
A. V. Ablé, B. R. N’Guessan and E. H. S. Bamba, « The monosaccharide Degradation Analysis by Functional Density Theory at Level B3LYP/6–311 G (D, P), » Open. Access. Journal. Biogeneric Science and Research, vol. 6, no. 2, 2020.
doi: 10.46718/JBGSR.2020.06.000144
R. Choehom, S. Ketsa and W. G. Van Doorn, “The senescent spotting of banana peel is inhibited by modified atmosphere packaging,” Postharvest Biol. Technol, vol. 31, pp. 167–175, 2004.
C. Trakulnaleumsai, S. Ketsa and W. G. Van Doorn, “Temperature effects on peel spotting in Sucre banana fruit,” Postharvest Biol. Technol, vol. 39, pp. 285–290, 2006.
J. Ngalani, « La conservation des fruits tropicaux : cas de la banane plantain. Études préliminaires », Fruits, vol. 45, pp. 89–92, 1986.
J. Marchal, « Contraintes post-récolte et perspectives d’amélioration de la manutention, du stockage et de la transformation du plantain et des autres bananes à cuire en Afrique de l’Ouest, » Fruits, vol. 45, pp. 439–445, 1990.
M. Collin, Allongement de la durée de vie verte du bananier plantain par différentes techniques de conservation, IRFA, 1991.
H. Dupin, Alimentation et Nutrition Humaines, Édition ESF : Paris, France, 1992.
D. Chamara, K. Illeperuma, G. P. Theja and K. Sarananda, “Modified atmosphere packaging of Kolikutu bananas at low temperature,” Journal of Horticultural Science and Biotechnology, vol. 75, no. 1, pp. 92–96, 2000.
E. Kerbel, A. A. Kader and R. J. Romani, “Effects of elevated CO2 concentrations on glycolysis in intact ‘Barlett’ pear fruit,” Plant. Physiol, vol. 86, pp. 1205–1209, 1988.
L. Chung, H. Hirao, X. Li and K. Morokuma, “The ONIOM method: its foundation and applications to metalloenzymes and photobiology,” Computational Molecular Science, vol. 2, no. 12, pp. 327–350, 2012.
A. V. Able, B. R. N’guessan and E. H. S. Bamba, “Hydrogen Bonds Sites of Amylose or Amylopectin From Starch at the ONION Level (B3LYP/6–311++G [d, p]: AM1)”, Computational Chemistry, vol. 9, pp. 85–96, 2021.
doi: 10.4236/cc.2021.91005.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peterson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada. Gaussian 09, Revision A.02. Wallingford CT, 2009
G. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, 1999.
G. Jeffrey and W. Saenger, “Hydrogen Bonding in Biological Structures,” Springer, 2007.
doi : https://doi.org/10.1007/978-3-642-85135-3
J. Jorly and D. J. Eluvathingal, “Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation,” Journal of the American Chemical Society, vol. 129, pp. 4620–4632, 2007.
doi : https://doi.org/10.1021/ja067545z
A. Bondi, « Van der Waals Volumes and Radii, » Journal of Physical Chemistry, vol. 68, pp. 441–451, 1964.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 EL Hadji Sawaliho Bamba, Boka Robert N’Guessan, Anoh Valentin Ablé
This work is licensed under a Creative Commons Attribution 4.0 International License.