Four Parallel Decoding Schemas of Product Block Codes

Authors

  • Abdeslam Ahmadi Ecole Nationale Supérieure d’Arts et Métiers-Meknes
  • Faissal EL Bouanani Ecole Nationale Supérieure d’Informatique et d’Analyse des Systàmes-Rabat
  • Hussain Ben-Azza Ecole Nationale Supérieure d’Arts et Métiers-Meknes

DOI:

https://doi.org/10.14738/tnc.23.229

Keywords:

Error Correcting Codes, Product Block Codes, Genetic Algorithms, Parallel Decoding, Ierative Decoding, Time Complexity

Abstract

This paper presents four new iterative decoders for two dimensional product block codes (2D-PBC) based on Genetic Algorithms. Each of these iterative decoders runs in parallel on a number of processors connected by a network. They have almost the same complexity as the conventional iterative decoder, but their performances are improved since at each iteration, they trap
the better of extrinsic information computed by the elementary decoders running simultaneously on all processors.

References

C. E. Shannon, ”A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October,

Berrou, G., A. Glavieux, and P. Thitimajshima. ”Near Shannon limit

error-correcting coding : Turbo Codes,” in proc. 1993 Int. Conf. Commun.

Geneva, Switzerland, May 1993, pp. 1064-1070.

Gallager, R.G. Low Density parity Check Codes. Th`ese. Cambridge,

Mass.1963. IRE Transactions on Information Theory.1962.

D.J.C Mackay, and R.M. Neal, ”Near Shannon Limit Performance of

Low Density Parity Check Codes”, Electronics Letters, Vol. 32, no. 18,

pp. 1645-1646, August 1996.

J. H. Holland, ”Adaptation In Natural And Artificial Systems, University

of Michigan Press”, 1975.

D.E. Goldberg, ”Genetic Algorithms in Search, Optimization, and Machine

Learning”, Addison-Wesley, 1989.

A.TANENBAUM, ”Computer architecture”. Dunod 2001.

H. S. Maini, K. G. Mehrotra,C. Mohan, S. Ranka, ”Genetic Algorithms

for Soft Decision Decoding of Linear Block Codes”, Journal of Evolutionary

Computation, Vol.2, No.2, pp.145-164, Nov.1994.

F. El Bouanani, H. Berbia, M. Belkasmi, H. Ben-azza, ”Comparaison

des d´ecodeurs de Chase, l’OSD et ceux bas´es sur les algorithmes

g´en´etiques”, GRETSI 2007, Troyes, France 11-14 Septembre 2007 in

french.

M. Belkasmi, H. Berbia, F. El Bouanani, ”Iterative decoding of product

block codes based on the genetic algorithms”, Source and Channel

Coding (SCC), 2008 7th International ITG Conference on Source and

Channel Coding (SCC’08), 2008.

A. Ahmadi, F. El Bouanani, H. Ben-Azza, and Y. Benghabrit, ”Reduced

Complexity Iterative Decoding of 3D-Product Block Codes Based on

Genetic Algorithms”, Journal of Electrical and Computer Engineering,

Volume 2012.

A. Ahmadi, F. El Bouanani, H. Ben-Azza, and Y. Benghabrit, ”A Novel

Decoder Based on Parallel Genetic Algorithms for Linear Block Codes”,

International Journal of Communications, Network and System Sciences,

, 6, 66-76.

F.J. Macwilliams and N.J.A. Slone, ”The Theory of error correcting

rrror”, North-Holland publishing comapny, 1978, pp. 567-580.

E.R. Berlkamp, R. J. McEliece, and H. C. A. Van Tilborg, ”On the

inherent intractability of certain coding problems”, IEEE Transactions

on Information Theory, IT-24 :384-386, 1978.

A. Vardy, ”The intractability of computing the minimum distance of

a code”, IEEE Transactions on Information Theory, IT-43 :1757-1766,

A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee, ”Global convergence

of genetic algorithms: A markov chain analysis”, in Parallel Problem

Solving from Nature H. -P. Schwefel and R. M¨anner (Eds), Berlin and

Heidelberg : Springer, 1991, pp. 4-12.

D.B. Fogel, ”Evolving Arti cial Intelligence”, PhD dissert., San Diego

University of California, 1992.

G. Rudolph, ”Convergence analysis of canonical genetic algorithms”, IEEE Trans. on Neural Networks, 5(1): 96-101, 1994.

Downloads

Published

2014-06-12

How to Cite

Ahmadi, A., EL Bouanani, F., & Ben-Azza, H. (2014). Four Parallel Decoding Schemas of Product Block Codes. Discoveries in Agriculture and Food Sciences, 2(3), 49–69. https://doi.org/10.14738/tnc.23.229