Characteristics of Nanopositioning Electroelastic Digital-to-Analog Converter for Communication Systems
DOI:
https://doi.org/10.14738/tnc.86.9699Keywords:
Nanopositioning electroelastic digital-to-analog converter; Static and dynamic characteristics; Deformation; Piezoconverter; Strain and control characteristics; Transfer function.Abstract
The characteristics of the nanopositioning electroelastic digital-to-analog converter for communication systems are examined. In the static and dynamic regimes this characteristics are received. The static strain and control characteristics of the nanopositioning electroelastic digital-to-analog converter are obtained. The transfer function of the nanopositioning electroelastic digital-to-analog converter is received.
References
(1) Schultz, J., Ueda, J., Asada, H., Cellular actuators. Oxford: Butterworth-Heinemann Publisher, 2017. 382 p.
(2) Afonin, S.M., Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 74(3): p. 943-948, doi:10.1134/S1064562406060391.
(3) Zhou, S., Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor. IEEE transaction on ultrasonics, ferroelectrics, and frequency control, 2014. 61(3): p. 535-546, doi:10.1109/TUFFC.2014.2937.
(4) Przybylski, J., Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering structures, 2015. 84: p. 140-151, doi:10.1016/j.engstruct.2014.11.025.
(5) Ueda, J., Secord, T., Asada, H.H., Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME transactions on mechatronics, 2010. 15(5): p. 770-782, doi:10.1109/TMECH.2009.2034973.
(6) Karpelson, M., Wei, G.-Y., Wood, R.J., Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and actuators A: Physical, 2012. 176: p. 78-89, doi:10.1016/j.sna.2011.11.035.
(7) Afonin, S.M., Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international, 2015. 54(3): p. 424-439, doi:10.1134/S1064230715020021.
(8) Afonin, S.M., Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics, 2008. 53(3) p. 137-143, doi:10.1134/S1028335808030063.
(9) Afonin, S.M., Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 73(2), p. 307-313, doi:10.1134/S1064562406020402.
(10) Cady W.G., Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company, 1946. 806 p.
(11) Physical acoustics: Principles and methods. Vol.1. Part A. Methods and devices. Mason, W., Editor, New York: Academic Press, 1964. 515 p.
(12) Zwillinger, D., Handbook of differential equations. Boston: Academic Press, 1989. 673 p.
(13) Afonin, S.M., Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. Parinov, I.A., Editor, New York: Nova Science, 2015. p. 225-242.
(14) Afonin, S.M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in nanotechnology. Volume 19. Bartul, Z., Trenor, J., Editors, New York: Nova Science, 2017. p. 259-284.
(15) Afonin, S.M., Nano- and micro-scale piezomotors. Russian engineering research, 2012. 32(7-8): p. 519-522, doi:10.3103/S1068798X12060032.
(16) Afonin, S.M., Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of solids, 2007. 42(1): p. 43-49, doi:10.3103/S0025654407010062.
(17) Afonin, S.M., Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of solids, 2009. 44(6): p. 935-950, doi:10.3103/S002565440.
(18) Afonin, S.M., Static and dynamic characteristics of multilayered electromagnetoelastic transducer of nano- and micrometric movements. Journal of computer and systems sciences international, 2010. 49(1): p. 73-85, doi:10.1134/S106423071.
(19) Afonin, S.M., Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International journal of physics, 2017. 5(1): p. 9-15, doi: 10.12691/ijp-5-1-27.
(20) Afonin, S.M., Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International journal of physics, 2019. 7(2): p. 50-57, doi:10.12691/ijp-7-2-3.
(21) Afonin SM (2018) Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators, 2018. 7(1): 1-9, doi: 10.3390/act7010006.
(22) Afonin, S.M., Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators, 2019. 8(3): 1-14, doi: 10.3390/act8030052.
(23) Afonin, S.M., A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on networks and communications, 2018. 6(3): p. 1-9, doi:10.14738/tnc.63.4641.
(24) Afonin, S.M., Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems, Transactions on networks and communications, 2019. 7(3): p. 11-21, doi:10.14738/tnc.73.6564.
(25) Afonin, S.M., Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on networks and communications, 2020. 8(1): p. 8-15, doi:10.14738/tnc.81.7775.
(26) Afonin, S.M., Structural scheme actuator for nano research. COJ Reviews and Research, 2020. 2(5): p. 1-3, doiI:10.31031/COJRR.2020.02.000548.
(27) Afonin, S.M., Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ ecology and environmental sciences, 2018. 3(5): p. 306‒309. doi:10.15406/mojes.2018.03.00104.
(28) Afonin, S.M., Structural-parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of pharmacy and pharmaceutics, 2018. 5(1): p. 8-12, doi:10.15436/2377-131.
(29) Afonin, S.M., Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery and case studies open access journal, 2019. 3(3): p. 307–309, doi:10.32474/SCSOAJ.2019.03.000165.
(30) Springer Handbook of Nanotechnology. Bhushan, B., Editor, Springer, Berlin, New York, 2004. 1222 p.
(31) Afonin, S.M., Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of solids, 2014. 49(2): p. 196-207, doi:10.3103/S0025654414020095.
(32) Afonin, S.M., A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology, Transactions on machine learning and artificial intelligence, 2020. 8(4): p: 23-33, doi:10.14738/tmlai.84.8476.
(33) Afonin, S.M., Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied system innovation, 2020. 3(4): p. 1-7, doi:10.3390/asi3040053.
(34) Uchino, K. Piezoelectric Actuator and Ultrasonic Motors. Kluwer Academic Publisher: Boston, MA, USA, 1997; 347 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Sergey Afonin
This work is licensed under a Creative Commons Attribution 4.0 International License.